Theory of Computation (CSEN 5201)

Time Allotted : 3 hrs

Full Marks : 70

10 x 1=10

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A

(Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

(i) A non-deterministic finite state machine (ndfsa) M having m states has been converted into a deterministic finite state machine (dfsa) N having n states. It follows that

(a) m = n	(b) m < n
(c) m > n	(d) m can be less than, equal to or greater than n.

- (ii) There exists a deterministic finite state machine (dfsa) with n states that accepts all the strings in the regular expression 0*10*10*1 (and none others), where n equals (a) 4 (b) 3 (c) 5 (d) 2.
- (iii) L_1 and L_2 are two Type 3 (regular) languages. Let the language L consist of all strings that are in L_1 but not in L_2 . Then
 - (a) L is a Type 3 language
 - (b) L is a Type 2 language but not necessarily a Type 3 language
 - (c) L is not necessarily a Type 2 language
 - (d) L is a Type 0 language but not necessarily a Type 1 language.
- (iv) If the set of terminal symbols is { 0, 1, 2, 3 }, the total number of non-null strings of terminals of length at most 4 equals

(a) 256	(b) 320	(c) 336	(d) 340.

- (v) Which one of the following languages cannot be accepted by a non-deterministic pushdown acceptor (ndpda)?
 - $\begin{array}{ll} \mbox{(a)} \left\{ \mbox{ } 0^m 1^n \mbox{ } 0 < m, \mbox{ } 0 < n \mbox{ } \right\} & \mbox{(b)} \left\{ \mbox{ } 0^m 1^n 0^m \mbox{ } 0 < m, \mbox{ } 0 < n \mbox{ } \right\} \\ \mbox{(c)} \left\{ \mbox{ } 0^m 1^m 0^m \mbox{ } 0 < m \mbox{ } \right\} & \mbox{(d)} \left\{ \mbox{ } 0^m 1^n 0^r \mbox{ } 0 < m, \mbox{ } 0 < r \mbox{ } \right\}. \end{array}$
- (vi) Which one of the following sets of positive integers is not a recursive set?
 - (a) { n | n is a perfect square }
 - (b) { n | n is not a prime number }
 - (c) { n | all planar graphs can be coloured properly using n colours }
 - (d) { n | n is not a prime number and n cannot be expressed as the sum of two or more prime numbers }.

(vii) A deterministic pushdown acceptor (dpda) can be constructed to recognize any given language L of Type n, where n equals

(a) 0	(b) 1	(c) 2	(d) 3.

(viii) The Pumping Lemma for Regular Languages can be used to prove that a given language L

(a) is not Type 0 (b) is not Type 1 (c) is not Type 2 (d) is not Type 3.

- (ix) A machine M has been designed such that it accepts a given positive integer n as input, if and only if n is a prime number. Then which one of the following alternatives is false?
 - (a) M cannot be a deterministic finite state acceptor (dfsa)
 - (b) M cannot be a non-deterministic finite state acceptor (ndfsa)
 - (c) M cannot be a non-deterministic pushdown acceptor (ndpda)
 - (d) M cannot be a Turing machine.
- (x) We are supplied two deterministic finite state acceptors (dfsas) M₁ and M₂ on the input alphabet {0,1}. We want to determine whether the languages L(M₁) and L(M₂) are identical sets, i.e., whether they contain exactly the same strings. Which of the following alternatives is true?
 - (a) There is a dfsa that will solve the problem
 - (b) There is a pda that will solve the problem but not a dfsa
 - (c) There is a Turing machine that will solve the problem but not a pda
 - (d) There is no effective procedure for solving the problem.

Group – B

- 2.(a) Design a deterministic finite state acceptor (dfsa) M_1 that will accept only those strings on the alphabet {0,1} which do *not* begin with the substring '010'. Show both the state table and the state transition diagram of M_1 and briefly explain how M_1 works.
 - (b) Design a deterministic finite state acceptor (dfsa) M_2 that will accept only those strings on the alphabet {0,1,2} in which the symbol 2 never follows the symbol 0. For example, M_2 will accept the strings 101200 and 10101 but not the string 110020. Show both the state table and the state transition diagram of M_2 .

6+6=12

3.(a) A non-deterministic finite state acceptor (ndfsa) M_3 has the state table shown below. The start state is S and the only final state is C. Convert M_3 to an equivalent deterministic finite state acceptor (dfsa) M_4 , clearly indicating the start and final states. Briefly explain your method of conversion.

	0	1
→ S	S, A	S
Α		В
В		С
*C	С	С
	2	

CSEN 5201

(b) Minimize the number of states in the machine M_4 designed above to get a dfsa M_5 . Briefly explain the method of minimization.

6+6=12

Group – C

- 4.(a) Construct a deterministic finite state acceptor (dfsa) M_6 on the input alphabet { 0,1 } that accepts a string α if and only if α is contained in the regular expression $0^*(0+1)(0+1)^*$.
 - (b) Construct a deterministic finite state acceptor (dfsa) M_7 on the input alphabet { 0,1 } that accepts a string α if and only if α is *not* contained in the regular expression 0^*1^*01 .

6+6=12

- 5.(a) State and explain the Pumping Lemma for Regular Languages. Is it possible to use this lemma to show that a given language L is *not* context-free?
 - (b) Use the Pumping Lemma for Regular Languages to show that the language $L=\{ 0^m 1^n 0^m 1^n \mid m > 5, n > 10 \}$ is not regular.

6+6=12

Group – D

- 6.(a) When is a Type 2 (context-free) grammar said to be ambiguous?Consider the grammar G = (V, T, S, P) where V = { S, A, B, 0, 1, 2, 3, 4 }, T = { 0, 1, 2, 3, 4 }, S is the start symbol, and the productions are as follows: $S \rightarrow A, S \rightarrow B, S \rightarrow 4, A \rightarrow 012S, B \rightarrow 012S3S$. Show that the grammar G is ambiguous.
 - (b) Provide a Type 2 (context-free) grammar for the following language L over the input alphabet { 0, 1 }: L = { α | the string α has more 0's than 1's }

6+6=12

- 7.(a) Let G be a Type 2 (context-free) grammar in Chomsky Normal Form. Let α be a string in L(G) of length n, i.e., α has n terminal symbols. Explain why the parse tree of α must have exactly (2n -1) internal nodes (i.e., nodes with children).
 - (b) Using the Pumping Lemma for Context-Free Languages, show that the language $L=\{0a1b0a1b \mid a > 0, b > 0\}$ is not a Type 2 (context-free) language.

6+6=12

Group – E

- 8.(a) Two positive integers m and n are written on a Turing machine tape in unary notation. The integer m is to the left of the integer n on the tape, and a single blank cell separates the two integers. At start the read/write head is positioned on the leftmost 1 of m. Give the state transition diagram of a Turing machine that will halt on the leftmost 1 of m if m >= n, and will halt on the leftmost 1 of n if m < n. Clearly state any assumptions made.
 - (b) When is a set of integers said to be a recursive set? What are the major characteristics of a recursive set? Explain whether the set of all positive integers that are not prime numbers is a recursive set.

6+6=12

- 9.(a) Briefly clarify what is meant by a 'Universal Turing Machine'. Can every effective procedure be implemented by a Universal Turing Machine assuming the input is appropriately supplied?
 - (b) What is the 'Halting Problem' for Turing Machines? "Halting Problem for Turing machines is unsolvable" comment.

6+6=12