B.TECH /AEIE/ ECE/EE/CE/3RD SEM/ MATH 2001/2017 MATHEMATICAL METHODS (MATH 2001)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
 - (i) The value of ∮_C dz/(z-4) where C is the circle |z 1| = 2 is
 (a) 2πi
 (b) 0
 (c) πi
 (d) 4πi.
 (ii) Which of the following functions has an essential singularity at z = 0?
 - (a) $\frac{1}{z}$ (b) $\frac{1}{z} + \frac{1}{z^2}$ (c) e^{z^2} (d) $e^{\frac{1}{z^3}}$
 - (iii) Let C be a closed curve enclosing the origin. Then $\oint_C \frac{\cos z}{z} dz$ is (a) πi (b) $2\pi i$ (c) $-\pi i$ (d) $4\pi i$.
 - (iv) The Fourier sine transform of $f(x) = e^{-ax}$, a > 0 is

(a)
$$\frac{s}{(a^2+s^2)}$$
 (b) $\frac{a}{(a^2+s^2)}$ (c) $\frac{2s}{(a^2+s^2)}$ (d) none of these.
(v) $\int_{-1}^{1} P(x) dx =$

- (vi) The period of the function $f(x) = |\sin x|$ is (a) 2π (b) $\frac{\pi}{2}$ (c) π (d) 1.
- (vii) For the differential equation

 $x^{2}(1-x)y'' + xy' + y = 0$

- (a) x = 1 is an ordinary point
- (b) x = 1 is a regular singular point
- (c) x = 1 is an irregular singular point
- (d) x = 0 is an ordinary point.

B.TECH /AEIE/ ECE/EE/CE/3RD SEM/ MATH 2001/2017

(viii)
$$\frac{d}{dx} \{x^4 J_4(x)\} =$$

(a) $x^4 J_3(x)$ (b) $x^3 J_3(x)$ (c) $x^4 J_5(x)$ (d) $-x^4 J_3(x)$.
(ix) The P L of $(D^2 - D'^2)z = \cos(x + y)$ is

- (ix) The P.I of $(D^2 D^2)^2 = \cos(x + y)$ is (a) $\frac{x}{2}\cos(x + y)$ (b) $\frac{x}{2}\sin(x + y)$ (c) $x\sin(x + y)$ (d) $x\cos(x + y)$. (x) The value of $\lim_{z \to i} \frac{iz+1}{z-i}$ is
 - (a) 1 (b) -1 (c) i (d) -i.

Group – B

2. (a) Find the imaginary part v(x, y) of the analytic function $f(z) = u(x, y) + iv(x, y) \text{where } u(x, y) = e^{2x}(x \cos 2y - y \sin 2y).$

(b) Show that
$$\int_0^{2\pi} \frac{\cos 3\theta}{5-4\cos} d\theta = \frac{\pi}{12}$$

$$6 + 6 = 12$$

3. (a) Evaluate
$$\oint_c \frac{\sin(\pi z^2) + \cos(\pi z^2)}{(z-1)(z-2)} dz$$
 where *C* is the circle $|z| = 3$.

(b) Determine the poles of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ and the residue at each pole. Hence evaluate $\oint_C f(z) dz$, where C is the circle |z| = 2.5.

$$6 + 6 = 12$$

- 4. (a) Find the Fourier transform of the function $f(x) = \begin{cases} 1, \text{ for } |x| < 1 \\ 0, \text{ for } |x| > 1 \end{cases}$ Hence evaluate $\int_0^\infty \frac{\sin x \cos \lambda x}{x} dx$.
- 5. (a) Evaluate $F^{-1}[e^{-a|s|}], a > 0$.
 - (b) Find f(x) if its Fourier cosine transform is $\bar{f}_c(s) = \begin{cases} a - \frac{s}{2}, & \text{for } s < 2a \\ 0, & \text{for } s \ge 2a \end{cases}$

B.TECH /AEIE/ ECE/EE/CE/3RD SEM/ MATH 2001/2017 Group - D

6. (a) Find the series solution of the differential equation

 $(1 + x²)\frac{d²y}{dx²} + x\frac{dy}{dx} - xy = 0$ about the point x = 0.

(b) Express $J_4(x)$ in terms of $J_0(x)$ and $J_1(x)$.

$$7 + 5 = 12$$

7. (a) Show that
$$J_{\frac{5}{2}}(x) = \sqrt{\frac{2}{\pi x}} \left(\frac{3-x^2}{x^2}\sin x - \frac{3}{x}\cos x\right)$$
 where $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}}\sin x$ and $J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}}\cos x$.

- (b) Determine the singular points and check if they are regular or irregular: $x^{2}(x + 1)^{2}y'' + (x^{2} - 1)y' + 2xy = 0.$
- (c) Solve by finite difference method: y''(x) + y(x) + 1 = 0, where y(0) = 0, y(1) = 0 and h = 0.5.

$$4 + 2 + 6 = 12$$

Group – E

- 8. (a) Form the partial differential equation (by eliminating the arbitrary function) from the relation $z = (x + y)\phi(x^2 y^2)$.
- (b) Solve $(x^2 yz)p + (y^2 zx)q = z^2 xy$

$$6 + 6 = 12$$

9. (a) Find the general solution of the following partial differential equation

$$\frac{\partial^2 z}{\partial x^2} - 7 \frac{\partial^2 z}{\partial x \partial y} + 12 \frac{\partial^2 z}{\partial y^2} = e^{x-y}$$

(b) Solve the heat equation given by

$$\frac{\partial u}{\partial t} = \frac{1}{h^2} \frac{\partial^2 u}{\partial r^2}$$

by the method of separation of variables.

(Given that u(0,t) = 0, u(l,t) = 0, $u(x,0) = \sin \frac{\pi x}{l}$).

5 + 7 = 12