
4th International Conference on ‘Cpmputing, Communication and Sensor Network’,CCSN2015.

An Improved Recommender System Based on Clustering using Representatives

Joydeep Das
1
, Harsh Gupta

2
, Shreya Dugar

2
, Subhashis Majumder

3
 and Prosenjit Gupta

4

1
The Heritage Academy, Kolkata, WB, India

Joydeep.das@heritageit.edu
2
Department of Computer Science and Engineering, Institute of Engineering and Management, Kolkata, WB, India

harshguptahs@gmail.com, shreyadugar789@gmail.com

3
Department of Computer Science and Engineering, Heritage Institute of Technology, Kolkata, WB, India

subhashis.majumder@heritageit.edu

4
NIIT University, Neemrana, Rajasthan, India

 prosenjit_gupta@acm.org

ABSTRACT

Recommender systems have proven to be valuable means

for online users to cope up with the information overload

and have become one of the most powerful and popular

tools in electronic commerce. Collaborative Filtering (CF)

is one of the most successful recommendation techniques

that recommends by using the opinions of a community of

users. However, the similarity computations associated

with CF algorithms are very expensive and grow

polynomially with the number of users and items in a

database. To address this scalability problem, we propose

a clustering based recommendation approach. Our

proposed work partitions the users of the CF system using

a CURE (Clustering using representatives) based data

clustering algorithm and use the clusters to select the

similar users of a target user. In this work, we further try

to find the optimal number of clusters by using a binary

search based technique. The cluster-based approach

reduces the runtime of the system as we avoid similarity

computations over the entire database. Experiments

performed on MovieLens-1M dataset indicate that our

method is efficient in reducing the runtime as well as

maintains an acceptable recommendation quality.

Keywords: Recommender Systems, Collaborative

Filtering, Data Clustering, Scalability.

I. INTRODUCTION

 Recommender Systems (RS) are widely used for

automatic personalization of information on web sites and

information retrieval systems. RS help users in their

decision making process by suggesting items that the user

may prefer. Today the problem is not about how to get
correct information to make a decision, rather, how to

make a right decision out of enormous information. RS

use the opinions of a group of uses to help individuals in

that group more effectively identify content of interest

from a potentially large search space.

Collaborative Filtering (CF) [6] is a recommendation

technique that identifies similarities between users, based

on their ratings in order to select neighbors and compute

predictions for the active users. Unlike content-based

approaches [1], which use the content of items previously

rated by a user u, CF approaches rely on the ratings of u

as well as those of other similar users in the system. The

key idea is that the rating of u for a new item i is likely to

be similar to that of another user v, if u and v have rated

other items in a similar way.

Despite the success of RS and CF in many application

areas, there are still two potential problems with RS. One

is the scalability, which is how quickly a RS can generate

recommendation, and the second is to ameliorate the

quality of the recommendation for a customer. Pure CF

recommender systems produce high quality

recommendation than those of pure content-based and

demographic recommender systems [11]. However, due

to the sparsity, they cannot find similar items or users

using rating correlation, resulting in poor prediction

quality and reduced coverage (The percentage of the

items that can be recommended from all available items

in the system).

In this paper, we present a novel framework for CF which

combines the strengths of memory-based and model-

based CF approaches [1] in order to enable

recommendation by groups of closely related individuals.

We propose a clustering based CF algorithm that is

perfectly applicable for large datasets which are

nowadays common in e-commerce applications. Our

method is to partition the users of the CF system using a

clustering algorithm and use the clusters (partitions) as

neighborhood. In this work, we cluster the users of the

system using a CURE [5] based clustering algorithm. The

use of clusters permits the integration of the advantages

from both the memory-based and model-based

approaches. By using the rating information from a group

of closely related users, unrated items of the individual

user in a group can be predicted; this allows the missing

values to be filled in. Moreover, the proposed approach is

likely to make the recommendations faster, because the

size of the group that must be analyzed to find neighbors

is much smaller. We also propose an adaptive technique

to find the optimal number of clusters. Once clustering is

done, we apply any traditional CF algorithm to the

clusters individually. Our primary objective is to reduce

the overall running time without sacrificing the

recommendation quality much. This ensures scalability,

allowing us to tackle bigger datasets using limited

computational resources. The results of the experiments

performed indicate that our approach is effective in

reducing the runtime of the algorithm while maintaining

an acceptable recommendation quality.

4th International Conference on ‘Cpmputing, Communication and Sensor Network’,CCSN2015.

The rest of the paper is organized as follows. In section II,

we provide background information about CF and also

discuss some of the past works related to clustering CF

models. Section III outlines our proposed clustering based

approach while section IV describes our experimental

framework, experimental results, and evaluations. We

conclude discussing our future research directions in

Section V.

II. BACKGROUND AND RELATED WORK

A. Collaborative Filtering

Breese et al. [1] divide collaborative filtering approaches

into two classes: memory-based and model-based

algorithms.

Memory based algorithms maintain the original setup of

the CF task. They use statistical techniques to build the

neighborhood relationship for an active user, and then

usually use a weighted sum of the ratings to predict

missing values. A general user-based formulation of the

weighted sum scheme can be [1]:

𝑝𝑎,𝑗 = 𝑟𝑎 + 𝑘 𝑤 𝑎, 𝑖 (𝑟𝑖 ,𝑗 – 𝑟𝑖

n

𝑖=1

)

where n is the size of the neighborhood, and 𝑟𝑎 and 𝑟𝑖 are

the average ratings for the active user a and neighbor user

i respectively. w(a, i) is the correlation between user a

and user i. k is a normalizing factor. The most important

part for memory-based algorithms is the similarity

measurement. Two commonly used memory-based

algorithms are the Pearson Correlation Coefficient (PCC)

algorithm [9] and the Vector Space Similarity (VSS)

algorithm [1].

Model based algorithms utilize the collection of training

data to learn a model first and then use it to make

predictions instead of directly manipulating the original

database. The modeling process is always performed by

machine learning or data mining techniques such as the

Bayesian model [7], Regression-based model [10], and

Clustering model [8].

B. Clustering CF models

The most related model to this paper is the clustering CF

model. Clustering algorithms work by identifying groups

of users who share similar preferences. Once the clusters

are created, predictions for an individual can be made by

averaging the opinions of the other users in that cluster.

Clustering techniques usually produce less personal

recommendations compared to nearest neighbor

algorithms. However, we can achieve better performance

(reduced runtime), since the size of the cluster that must

be analyzed is much smaller compared to the entire users'

space. Several CF based recommendation algorithms

incorporated clustering methods in order to alleviate the

sparsity and scalability problems. To overcome the

sparsity problem, Xue et al. [12] proposed a CF system

based on K-means clustering in order to smooth the

unrated data for individual users according to the clusters.

To address the scalability issue, Sarwar et al. [8] used

clustering techniques to partition the data into clusters and

used a memory-based CF algorithm such as a Pearson

correlation-based algorithm to make predictions for users

within each cluster. With the same perspective, Das et al.

proposed a decomposition based recommendation

algorithm using multiplicatively weighted Voronoi

diagram to enhance the scalability of the system [3].

Similar decomposition based recommendation techniques

can also be found in [2] and [4].

III. OUR FRAMEWORK

Our primary goal is to partition the large user-item matrix

into smaller manageable clusters and apply the CF based

recommendation separately to the clusters. The proposed

approach should improve the scalability of the system as

we avoid similarity computations over the entire user-

item matrix. However, there are two main questions: (a)

How to find meaningful user-item subgroups or clusters

from limited information? The only information we have

is the user-item matrix, such as ratings for movies. (b)

How to combine user-item subgroups or clusters with

existing CF methods and improve their performance?

We find the user-item subgroups (clusters) using a CURE

[5] based data clustering algorithm and propose a unified

strategy to combine subgroups with existing CF methods.

Now, we formally present our algorithm.

Algorithm: Cluster-based Recommendation

Step 1: Preprocess: create user clusters 𝐶.

Step 2: Given an active user 𝑢𝑎 and i rated items, an item

t and an integer K, the number of nearest neighbors:

Step 2.1: Allocate user 𝑢𝑎 to one of the clusters

𝑐𝑎 ∈ 𝐶 .

Step 2.2: Calculate similarity 𝑠𝑖𝑚(𝑢𝑎 , 𝑢) for

each 𝑢 ∈ 𝑐𝑎 .

 Step 2.3: Select the top-K most similar users as

nearest neighbors of 𝑢𝑎 .

Step 2.4: Predict the ratings of a particular item t

for 𝑢𝑎 by the behaviors of the K nearest neighbors.

Step 3: Recommend top-N items to the active user based

on the prediction score.

In this work, we use Pearson's correlation coefficient to

compute similarity between two users. Given two users’ u

and v, Pearson's coefficient is defined as follows.

𝑆𝑖𝑚 𝑢, 𝑣 =
 𝑟𝑢,𝑖 − 𝑟𝑢 (𝑟𝑣,𝑖 − 𝑟𝑣) 𝑖∈𝐼

 (𝑟𝑢,𝑖 − 𝑟𝑢)2
𝑖∈𝐼 (𝑟𝑣,𝑖 − 𝑟𝑣)2

𝑖∈𝐼

where the 𝑖 ∈ 𝐼 summations are over the items that both

the users u and v have rated and 𝑟𝑢 is the average rating of

the co-rated items of the u th user.

The prediction score 𝑃𝑎,𝑖 for a user a, on a certain item i,

is calculated using the following formula.

𝑃𝑎,𝑖 = 𝑟𝑎 +
 (𝑟𝑢,𝑖 − 𝑟𝑢) ∗ 𝑠𝑖𝑚(𝑎, 𝑢)𝑢∈𝑈

 𝑠𝑖𝑚(𝑎, 𝑢) 𝑢∈𝑈

where 𝑟𝑎 and 𝑟𝑢 are the average ratings for the user a and

user u on all other rated items, and sim(a, u) is the

correlation between user a and user u. The summations

are over all the users 𝑢 ∈ 𝑈 who have rated the item i.

4th International Conference on ‘Cpmputing, Communication and Sensor Network’,CCSN2015.

A. Clustering Algorithm

In this work, we use a CURE [5] based clustering

algorithm to cluster the users of the system. CURE is a

hierarchical clustering algorithm which can identify

clusters having non-spherical shapes and wide variances

in size. To handle large databases, CURE employs a

combination of random sampling and partitioning. A

random sample drawn from the data set is first partitioned

and each partition is partially clustered. The partial

clusters are then clustered in a second pass to yield the

desired clusters. The number K is input to the algorithm

that specifies the desired number of clusters. CURE

method first select K users arbitrarily as the initial centers

of the K clusters respectively. For each of the remaining

users, the distance between the user and all the cluster

centers is calculated and the user is assigned to the

minimum distance cluster. Next, iteratively the cluster

centers are re-calculated until the centers do not change

their locations any more.

In this work, we use MovieLens-1M dataset

(http://www.movielens.org/) for testing our algorithm.

The dataset contains 1,000,209 anonymous ratings of

approximately 3,900 movies made by 6,040 MovieLens

users and 18 movie genres. Ratings are on a five star

(integral) scale from 1 to 5. We first try to learn the

preferences of the individual users on the basis of the

genres of movies that they have reviewed. Assuming the

fact that movie genre is sufficient to capture how users

rate movies, we project the user preferences in a new,

low-dimensional space, called User Genre Space (UGS).

In UGS, we represent the preferences of each user as a

vector, called user vector, in n dimensions, where n is the

total number of genres present in the dataset. Each

dimension in this vector is represented by a genre and the

values of these dimensions are the weights assigned to the

corresponding genre. For every movie that a user has

rated, the corresponding genre is weighted by its rating. In

case of multiple genres, all of them are assigned the same

weightage as the rating, and are thus treated equally.

Finally the UGS vector is normalized.

We have given an example of movie preferences for two

users - User1 and User2 in Table I and Table II, while the

corresponding user vectors are shown in Figure 1 and

Figure 2 respectively. Higher weightage for genres like

Comedy, Thriller and Action for User1 displays the liking

for movies with these particular themes while User2 has

preference for Action and Adventure movies. We

calculate the weights of the different genre from Table I

and Table II as follows. For the Action genre, User 1 has

rated two movies 'Deep Blue Sea' and 'The 13th Warrior'.

Since the ratings of the two movies are 5 and 2

respectively, therefore the Action genre is weighted by 5

+ 2 = 7. Similarly for the Comedy genre, User1 has rated

two movies with a rating of 4, and therefore the weight of

the Comedy genre is 4 + 4 = 8. Note that, apart from the

Action, the movie 'Deep Blue Sea' also belongs to Sci-Fi

and Thriller genres. Therefore both the Sci-Fi and Thriller

genres will also be weighted by 5. In this way, we

calculate the weights of all the genres present in the user

vector, and then the vector is normalized. If a user does

not have any preference for a particular genre then the

weight of that genre is considered as 0.0. Continuing the

above mentioned approach, we create user vectors for all

the remaining users. We implement our clustering

algorithm using these user vectors. We use Euclidean

distance to find the distance between two vectors. Once

clustering is done, next we measure the presence of

attribute autocorrelation in the clusters to verify whether

users with similar demographic profiles such as age,

gender, occupation, location, etc. are grouped in the same

clusters.

TABLE I

 AN EXAMPLE OF MOVIE PREFERENCES FOR USER1

TABLE II

 AN EXAMPLE OF MOVIE PREFERENCES FOR USER 2

Fig. 1. A Sample User Vector for user1.

Fig. 2. A Sample User Vector for user2.

Movie Genre Rating

Saturn 3 Adventure, Sci-Fi, Thriller 5

Excalibur Action, Drama, Fantasy,

Romance

5

Total Recall Action, Adventure, Sci-Fi,

Thriller

4

Tarzan the

Fearless

Action, Adventure 3

Movie Genre Rating

Deep Blue Sea Action, Sci-Fi, Thriller 5

Runaway Bride Comedy, Romance 4

A Christmas Story Comedy, Drama 4

The 13th Warrior Action, Horror, Thriller 2

4th International Conference on ‘Cpmputing, Communication and Sensor Network’,CCSN2015.

B. Attribute Autocorrelation

It measures the co-variance of an attribute of interest with

other attributes. For e.g. it can measure the variation of

user preferences (ratings) with the different demographic

features of the users, such as age, gender, occupation,

location, etc. In our work, we use MovieLens 1M dataset

and it has information about the demographic attributes of

the users, such as age, gender, location and occupation.

We can define an autocorrelation index using the age of

the users. In the MovieLens 1M data, the age of the users

are divided into the following seven age groups: below

18, 18 - 24, 25 - 34, 35 - 44, 45 - 49, 50 - 55 and 56 and

above. For simplicity we represent these age groups as

discrete values. Age below 18 is mapped to 1, 18 - 24 to

2, 25 - 34 to 3, 35 - 44 to 4, 45 - 49 to 5, 50 - 55 to 6 and

56 and above to 7. Next, we consider one movie at a time

and find how the ratings of that movie vary with respect

to the different age groups of the users. This can be done

as follows.

First find the average rating of the movie. Let us denote

this as 𝑟 . Now we consider two users i and j and calculate

𝑐𝑖 ,𝑗 = 𝑟𝑖 − 𝑟 (𝑟𝑗 − 𝑟)

 𝑐𝑖,𝑗 is the rating similarity between user i and j. 𝑟𝑖 and 𝑟𝑗

are the ratings of user i and j on that movie.

Let 𝑎𝑖 and 𝑎𝑗 denote the age groups of user i and user j.

We can define age similarity 𝑤𝑖 ,𝑗 between the two users as

follows. 𝑤𝑖 ,𝑗 = 1 if both i and j belongs to the same age

group, and

𝑤𝑖 ,𝑗 =
1

 𝑎𝑖 − 𝑎𝑗 + 1

if they belongs to different age groups.

Now the autocorrelation index c can be defined as

𝑐 =
 𝑤𝑖 ,𝑗𝑗 𝑐𝑖 ,𝑗𝑖

𝜎2 𝑤𝑖 ,𝑗𝑗𝑖

Where

𝜎2 =
 (𝑟𝑖 − 𝑟)2

𝑖

(n − 1)

Here 𝜎2 is the variance. The positive c value indicates the

presence of attribute autocorrelation, i.e., people with

similar age rated similarly while negative value implies

that the ratings are dissimilar. A zero value indicates that

the ratings are distributed independently of age. We

measure the value of this autocorrelation index in all the

clusters to verify whether people with similar age are

grouped in the same clusters.

C. Finding optimal value of K (no. of clusters): An

adaptive approach

The value of the attribute autocorrelation defined in the

previous section plays a major role in determining the

suitable value of K. Since positive values of c

(autocorrelation index) indicate the presence of attribute

autocorrelation in the clusters, therefore we define a

metric PA, which measures the percentage of positive

autocorrelation in the clusters. Next, an adaptive

procedure is followed to determine the suitable value of

K. Initially, we start with K=2 and find the average PA

value across the two clusters. Then in successive iteration

we increase the value of K exponentially as successive

powers of 2 till for some 𝐾 = 𝐾𝑚𝑎𝑥 , the average PA value

across all the K clusters is less than the average PA value

of the previous K clusters. A binary search is then carried

out within the range 𝐾𝑚𝑎𝑥 2 and 𝐾𝑚𝑎𝑥 , to find 𝐾𝑜𝑝𝑡 , the

optimal value of K for which the average PA value of the

K clusters is greater or equal to the average PA value of

the preceding K clusters. Note that the above adaptive

method ensures that if 𝐾𝑜𝑝𝑡 is the desired value of K, then

it is found in at most 2 log 2𝐾𝑜𝑝𝑡 − 1 = 𝑂(log 2𝐾𝑜𝑝𝑡)

iterations

D. Our Recommendation Approach

The main idea of our work is to apply some CF algorithm

in each cluster and try to merge the prediction results

together. For a target user, we extract the genre

preferences of the user and represent his/her preferences

as a vector (user vector) in n dimensions, where n is the

total number of genres. The weights of the genres are

assigned using the method discussed in section III (A).

Now we need to assign the target user to one of the

clusters. The distance between the target user and cluster

mean of all the clusters is calculated and the user is the

placed in the minimum distance cluster. Then we can

apply any CF algorithm to the cluster to recommend items

of interest to the target user.

Algorithm: Recommend_Movies

Step 1: Select a target user for recommendation.

Step 2: Represent the genre preferences of the target user

as a vector.

Step 3: Assign weights to different genres of the vector.

Step 4: Calculate the distance between the target user and

mean of all the clusters.

Step 5: Assign the target user to the minimum distance

cluster.

Step 5: Recommend top-N movies using any CF method.

IV. EXPERIMENTAL SETTINGS

We have tested our recommendation algorithm on the

MovieLens 1M dataset to validate our scheme. The user

ratings of the dataset are randomly split into two sets -

training set (80%) and test set (20%) for testing. Ratings

for the items in the test set were to be predicted.

A. Evaluation Metric Discussion

We use Mean Absolute Error (MAE) and Root Mean

Square Error (RMSE) [9] to evaluate the prediction

accuracy of our recommendation algorithm. The objective

of any recommendation algorithm is to reduce MAE and

RMSE values. Since our system produces a list of Top-N

recommended items, therefore MAE and RMSE are not

sufficient to truly evaluate the recommendation quality.

Therefore, we also use Precision and Recall metrics [6] to

evaluate the quality of the ranked list. Precision (P) is

defined as the ratio of relevant items selected to number

of items selected. Precision represents the probability that

a selected item is relevant. Recall (R) is defined as the

ratio of relevant items selected to total number of relevant

4th International Conference on ‘Cpmputing, Communication and Sensor Network’,CCSN2015.

items available. Recall represents the probability that a

relevant item will be selected.

𝑃 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 𝑎𝑛d 𝑅 =

𝑡𝑝

𝑡𝑝 + 𝑓𝑛

 True Positive (tp) or a hit denotes the case where a

product which is liked by a customer is recommended by

the recommender system. Similarly, False Positive (fp)

denotes the case where an item disliked by a customer has

been recommended by the system. False Negative (fn) is

the case when an item of customer's liking has not been

recommended by the system.

B. Evaluation Metric Discussion

We investigate two popular CF methods - user-based and

item-based and then combine these recommendation

methods with our framework to verify whether their

performance is improved. We use Pearson's correlation

coefficient [9] as the similarity metric for finding user-

user similarity while item-item similarity is captured

using Cosine-Based similarity metric [9].

User-based: For user-based algorithm, we use a

representative similarity metric – Pearson’s correlation, to

measure the user-user similarities and use the user-based

model in [9].

Item-based: For item-based algorithm, we use the vector

cosine similarity model to compute the item-item

similarities and use the item-based model in [9].

C. Results of Clustering

In this work, we cluster the users of the dataset according

to their preferences for movie genres. As already

discussed in section III, we represent the preferences of

each user as a vector (user vector) in n dimensions, where

n is total number of genres. The values of these

dimensions are the normalized weights of the

corresponding genre. We implement a CURE based

clustering algorithm to cluster the users in K clusters.

Once clustering is done, we next find the presence of

Attribute Autocorrelation in the clusters using the PA

metric (discussed earlier). PA metric measures the

percentage of positive autocorrelation in a cluster. In

Table III, we have shown the results of our clustering

using different values of K.

TABLE III

 RESULTS OF CLUSTERING

From Table III, we can notice that for K=2, the average

PA value across the 2 clusters is 28.35 while that for 4

clusters is 48.34. Since the average PA value for 4

clusters is more than corresponding PA value for 2

clusters, therefore, as discussed in section III (c), we next

set K=8, and find the average PA value. In this way, we

increment the value of K until we get a K value, 𝐾𝑚𝑎𝑥 , for

which the average PA value is less than the average PA

value of the previous K. It can be noted that for K=64, the

average PA value is 65.21, which is less than the average

PA value for K=32, which is 75.65. Next, we carry out a

binary search between 32 and 64 to find the value of 𝐾𝑜𝑝𝑡

,the optimal value of K for which the average PA value is

greater or equal to the average PA value for K=32. We

experimentally find the optimal value of K, 𝐾𝑜𝑝𝑡 as 48

with average PA value of 79.2. We have given a

comparative analysis of Attribute Autocorrelation (in

terms of average PA value) for different values of K in

Figure 3. Here base performance represents the PA value

of the entire users' space (without clustering). We

compare the base performance with the average PA

values of the different clusters. From Figure 3, it can be

clearly noted that our cluster based approach outperforms

the base results. We can also note that the maximum PA

is achieved for K=48, which is the optimal value of K.

Fig. 3. Comparison of Attribute Autocorrelation.

D. Recommendation Performance on MovieLens-1M

dataset

We apply the recommendation algorithm individually to

each cluster to improve the scalability of the system. The

clustering approach may however compromise the

recommendation quality as we do not use the ratings of

the entire users' space. The presence of Attribute

Autocorrelation in the clusters (discussed in the previous

section) further indicates that if we recommend only

using the users (or items) present in the cluster of the

target user, recommendation quality will improve.

For our experiment, MovieLens-1M ratings are randomly

divided into 80% training data and 20% testing data. We

report the performance of the recommendation algorithm

on the MovieLens-1M dataset in Table IV. In the Table,

we make a comparative analysis of the recommendation

performance using different evaluation metrics. Here base

performance indicates the performance of the algorithm

using the entire users' space (without decomposition). We

use MAE and RMSE to evaluate the prediction accuracy

while Precision@10 and Recall@10 are used to evaluate

the quality of the top-10 recommended items. The bold

numbers indicate that its value has an obvious

improvement over the corresponding values in the base.

Our experiments are run on a computer with Core i3 -

2100 @ 3.10GHz x 4 CPU and 4 GB RAM.

No. of clusters (K) PA (Average)

2 28.35

4 48.34

8 60.24

16 68.6

32 75.65

64 65.21

4th International Conference on ‘Cpmputing, Communication and Sensor Network’,CCSN2015.

TABLE IV

 RECOMMENDATION PERFORMANCE ON MOVIELENS-1M DATASET

 P@10

(Avg)

R@10

(Avg)

MAE

(Avg)

RMSE

(Avg)

User-based

Base 0.935 0.736 0.398 0.460

K = 2 0.858 0.765 0.419 0.571

K = 4 0.846 0.77 0.435 0.585

K = 8 0.841 0.75 0.392 0.589

K = 16 0.828 0.746 0.446 0.589

K = 32 0.817 0.724 0.486 0.619

K = 64 0.794 0.705 0.49 0.623

Item-based

Base 0.842 0.715 0.412 0.521

K = 2 0.822 0.724 0.421 0.532

K = 4 0.817 0.731 0.405 0.511

K = 8 0.849 0.753 0.452 0.562

K = 16 0.852 0.704 0.456 0.589

K = 32 0.79 0.721 0.476 0.589

K = 64 0.782 0.692 0.481 0.602

From Table IV, it is clear that our algorithm is working

fine with high precision and recall values as well as lower

MAE and RMSE values. As for example, in Table IV, for

K=8 (User-based case), we have an average Precision,

Recall, MAE and RMSE of 0.841, 0.75, 0.392 and 0.589

respectively averaged across all the 8 clusters. Thus the

algorithm performs better in terms of Recall and MAE

values while in terms of Precision and RMSE, the base

performance is slightly better. It can be observed that for

the other values of K, the values of the evaluation metrics

are quite comparable with the base. We report the average

recommendation time (in seconds) per user in Figure 4. It

can be clearly observed that the recommendation time

reduces significantly when we cluster the users' space. As

for example, the average recommendation time per user in

the entire users' space (base) is 10.16 seconds. However,

when it is partitioned into 64 clusters, the corresponding

time is 0.74 seconds, which is significantly less (by about

92%) than the base. From Figure 4, one can easily find

that our clustering based approach outperforms the base

performance irrespective of the number of clusters.

Analyzing the results of the experiments performed, we

can conclude that our approach is efficient in reducing the

running time without sacrificing the recommendation

quality in most cases.

CONCLUSION

In this paper, we propose a Collaborative Filtering based

recommendation technique which is made scalable by

clustering the users' space. Our proposed approach deals

with the Scalability problem of the CF process by

applying the recommendation algorithm separately to the

clusters. Experimental analysis using real datasets show

that our model is efficient, scalable as well as maintain

acceptable recommendation quality. In future, we have a

plan to implement Attribute Autocorrelation on the basis

of other demographic attributes of the user, such as

gender, occupation and location with the aim of

optimizing the clustering technique and the

recommendation algorithm.

Fig. 4. Recommendation Time Per User.

REFERENCES
[1] J. Breese, D. Heckerman, and C. Kadie, “Empirical

analysis of predictive algorithms for collaborative

filtering,” in Proc. of the 14th Conference on Uncertainty

in Artificial Intelligence, 1998, pp. 43-52.

[2] A. Dalmia, J. Das, P. Gupta, S. Majumder, and D. Dutta.

“Scalable hierarchical recommendations using spatial

autocorrelation,” in Proc. of the 3rd ASE International

Conference on BigData Science and Computing, 2014.

[3] J. Das, S. Majumder, D. Dutta, and P. Gupta, “Iterative

use of weighted voronoi diagrams to improve scalability

in recommender systems,” in Proc. of the 19th pacific-

Asia Conference on Knowledge Discovery and Data

Mining (PAKDD 2015), 2015, pp. 605–617.

[4] J. Das, S. Majumder, and P. Gupta, “Spatially aware

recommendations using k-d trees,” in Proc. of the 3rd

International Conference on Computational Intelligence

and Information Technology (CIIT 2013), 2013, pp.

209–217.

[5] J. Han and M. Kamber, Data Mining Concepts and

Techniques. Morgan Kaufmann Publishers, 2006.

[6] J. L. Herlocker, J. A. Konstan, and J. Riedl, “Explaining

collaborative filtering recommendations,” in Proc. of the

2000 ACM Conference on Computer Supported

Cooperative Work, ser. CSCW ’00, 2000, pp. 241–250.

[7] K. Miyahara and M. Pazzani, “Collaborative filtering

with the simple bayesian classifier,” in Proc. of the 6th

Pacific Rim International Conference on Artificial

Intelligence, 2000, pp. 679–689.

[8] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl,

“Recommender systems for large-scale e.commerce:

Scalable neighborhood formation using clustering,” in

Proc. of the Fifth International Conference on Computer

and Information Technology, 2002, pp. 158–167.

[9] X. Su and T. Khoshgoftaar, “A survey of collaborative

filtering techniques,” Advances in Artificial Intelligence,

vol. 2009, 2009.

[10] S. Vucetic and Z. Obradovic, “Collaborative filtering

using a regression based approach,” Knowledge and

Information Systems, vol. 7, no. 1, pp. 1–22, 2005.

[11] Y. Wang, S. Chan, and G. Ngai, “Applicability of

demographic recommender system to tourist attractions:

a case study on trip advisor,” in Proc. of 2012

IEEE/WIC/ACM International Conferences on Web

Intelligence and Intelligent Agent Technology, 2012, pp.

97–101.

[12] G. Xue, C. Lin, Q. Yang, G. Xi, H. Zeng, Y. Yu, and Z.

Chen, “Scalable collaborative filtering using cluster-

based smoothing,” in Proc. of the 28th annual

International ACM SIGIR Conference on Research and

Development in Information Retrieval, 2005, pp. 114–

121.

	authorName
	title
	abstract
	sectionHeads1
	text
	tableCaptions
	references

