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ABSTRACT 

Recommender systems have proven to be valuable means 

for online users to cope up with the information overload 

and have become one of the most powerful and popular 

tools in electronic commerce. Collaborative Filtering (CF) 

is one of the most successful recommendation techniques 

that recommends by using the opinions of a community of 

users. However, the similarity computations associated 

with CF algorithms are very expensive and grow 

polynomially with the number of users and items in a 

database. To address this scalability problem, we propose 

a clustering based recommendation approach. Our 

proposed work partitions the users of the CF system using 

a CURE (Clustering using representatives) based data 

clustering algorithm and use the clusters to select the 

similar users of a target user. In this work, we further try 

to find the optimal number of clusters by using a binary 

search based technique. The cluster-based approach 

reduces the runtime of the system as we avoid similarity 

computations over the entire database. Experiments 

performed on MovieLens-1M dataset indicate that our 

method is efficient in reducing the runtime as well as 

maintains an acceptable recommendation quality. 

Keywords: Recommender Systems, Collaborative 

Filtering, Data Clustering, Scalability. 

I. INTRODUCTION 

      Recommender Systems (RS) are widely used for 

automatic personalization of information on web sites and 

information retrieval systems. RS help users in their 

decision making process by suggesting items that the user 

may prefer. Today the problem is not about how to get 
correct information to make a decision, rather, how to 

make a right decision out of enormous information. RS 

use the opinions of a group of uses to help individuals in 

that group more effectively identify content of interest 

from a potentially large search space.  

Collaborative Filtering (CF) [6] is a recommendation 

technique that identifies similarities between users, based 

on their ratings in order to select neighbors and compute 

predictions for the active users. Unlike content-based 

approaches [1], which use the content of items previously 

rated by a user u, CF approaches rely on the ratings of u 

as well as those of other similar users in the system. The 

key idea is that the rating of u for a new item i is likely to 

be similar to that of another user v, if u and v have rated 

other items in a similar way.  

Despite the success of RS and CF in many application 

areas, there are still two potential problems with RS. One 

is the scalability, which is how quickly a RS can generate 

recommendation, and the second is to ameliorate the 

quality of the recommendation for a customer. Pure CF 

recommender systems produce high quality 

recommendation than those of pure content-based and 

demographic recommender systems [11]. However, due 

to the sparsity, they cannot find similar items or users 

using rating correlation, resulting in poor prediction 

quality and reduced coverage (The percentage of the 

items that can be recommended from all available items 

in the system). 

In this paper, we present a novel framework for CF which 

combines the strengths of memory-based and model-

based CF approaches [1] in order to enable 

recommendation by groups of closely related individuals. 

We propose a clustering based CF algorithm that is 

perfectly applicable for large datasets which are 

nowadays common in e-commerce applications. Our 

method is to partition the users of the CF system using a 

clustering algorithm and use the clusters (partitions) as 

neighborhood. In this work, we cluster the users of the 

system using a CURE [5] based clustering algorithm. The 

use of clusters permits the integration of the advantages 

from both the memory-based and model-based 

approaches. By using the rating information from a group 

of closely related users, unrated items of the individual 

user in a group can be predicted; this allows the missing 

values to be filled in. Moreover, the proposed approach is 

likely to make the recommendations faster, because the 

size of the group that must be analyzed to find neighbors 

is much smaller. We also propose an adaptive technique 

to find the optimal number of clusters. Once clustering is 

done, we apply any traditional CF algorithm to the 

clusters individually. Our primary objective is to reduce 

the overall running time without sacrificing the 

recommendation quality much. This ensures scalability, 

allowing us to tackle bigger datasets using limited 

computational resources. The results of the experiments 

performed indicate that our approach is effective in 

reducing the runtime of the algorithm while maintaining 

an acceptable recommendation quality.  
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The rest of the paper is organized as follows. In section II, 

we provide background information about CF and also 

discuss some of the past works related to clustering CF 

models. Section III outlines our proposed clustering based 

approach while section IV describes our experimental 

framework, experimental results, and evaluations. We 

conclude discussing our future research directions in 

Section V.  

II. BACKGROUND AND RELATED WORK 

A. Collaborative Filtering 

Breese et al. [1] divide collaborative filtering approaches 

into two classes: memory-based and model-based 

algorithms. 

Memory based algorithms maintain the original setup of 

the CF task. They use statistical techniques to build the 

neighborhood relationship for an active user, and then 

usually use a weighted sum of the ratings to predict 

missing values. A general user-based formulation of the 

weighted sum scheme can be [1]: 

𝑝𝑎,𝑗 = 𝑟𝑎 +  𝑘  𝑤 𝑎, 𝑖  (𝑟𝑖 ,𝑗  – 𝑟𝑖 

n

𝑖=1

 ) 

where n is the size of the neighborhood, and 𝑟𝑎   and 𝑟𝑖   are 

the average ratings for the active user a and neighbor user 

i respectively. w(a, i) is the correlation between user a 

and user i. k is a normalizing factor. The most important 

part for memory-based algorithms is the similarity 

measurement. Two commonly used memory-based 

algorithms are the Pearson Correlation Coefficient (PCC) 

algorithm [9] and the Vector Space Similarity (VSS) 

algorithm [1].  

Model based algorithms utilize the collection of training 

data to learn a model first and then use it to make 

predictions instead of directly manipulating the original 

database. The modeling process is always performed by 

machine learning or data mining techniques such as the 

Bayesian model [7], Regression-based model [10], and 

Clustering model [8]. 

B. Clustering CF models 

The most related model to this paper is the clustering CF 

model. Clustering algorithms work by identifying groups 

of users who share similar preferences. Once the clusters 

are created, predictions for an individual can be made by 

averaging the opinions of the other users in that cluster. 

Clustering techniques usually produce less personal 

recommendations compared to nearest neighbor 

algorithms. However, we can achieve better performance 

(reduced runtime), since the size of the cluster that must 

be analyzed is much smaller compared to the entire users' 

space. Several CF based recommendation algorithms 

incorporated clustering methods in order to alleviate the 

sparsity and scalability problems. To overcome the 

sparsity problem, Xue et al. [12] proposed a CF system 

based on K-means clustering in order to smooth the 

unrated data for individual users according to the clusters. 

To address the scalability issue, Sarwar et al. [8] used 

clustering techniques to partition the data into clusters and 

used a memory-based CF algorithm such as a Pearson 

correlation-based algorithm to make predictions for users 

within each cluster. With the same perspective, Das et al. 

proposed a decomposition based recommendation 

algorithm using multiplicatively weighted Voronoi 

diagram to enhance the scalability of the system [3]. 

Similar decomposition based recommendation techniques 

can also be found in [2] and [4]. 

III. OUR FRAMEWORK 

Our primary goal is to partition the large user-item matrix 

into smaller manageable clusters and apply the CF based 

recommendation separately to the clusters. The proposed 

approach should improve the scalability of the system as 

we avoid similarity computations over the entire user-

item matrix. However, there are two main questions: (a) 

How to find meaningful user-item subgroups or clusters 

from limited information? The only information we have 

is the user-item matrix, such as ratings for movies. (b) 

How to combine user-item subgroups or clusters with 

existing CF methods and improve their performance?  

We find the user-item subgroups (clusters) using a CURE 

[5] based data clustering algorithm and propose a unified 

strategy to combine subgroups with existing CF methods. 

Now, we formally present our algorithm. 

 

Algorithm: Cluster-based Recommendation 

 

Step 1:  Preprocess: create user clusters 𝐶. 

Step 2: Given an active user 𝑢𝑎  and i rated items, an item 

t and an integer K, the number of nearest neighbors: 

Step 2.1: Allocate user 𝑢𝑎  to one of the clusters 

𝑐𝑎 ∈ 𝐶 . 

Step 2.2: Calculate similarity 𝑠𝑖𝑚(𝑢𝑎 , 𝑢) for 

each 𝑢 ∈ 𝑐𝑎 . 

  Step 2.3: Select the top-K most similar users as 

nearest neighbors of 𝑢𝑎 . 

Step 2.4: Predict the ratings of a particular item t 

for 𝑢𝑎  by the behaviors of the K nearest neighbors. 

Step 3: Recommend top-N items to the active user based 

on the prediction score. 

In this work, we use Pearson's correlation coefficient to 

compute similarity between two users. Given two users’ u 

and v, Pearson's coefficient is defined as follows. 

𝑆𝑖𝑚 𝑢, 𝑣 =
  𝑟𝑢,𝑖 − 𝑟𝑢  (𝑟𝑣,𝑖 − 𝑟𝑣 ) 𝑖∈𝐼

  (𝑟𝑢,𝑖 − 𝑟𝑢 )2
𝑖∈𝐼   (𝑟𝑣,𝑖 − 𝑟𝑣 )2

𝑖∈𝐼

  

where the 𝑖 ∈ 𝐼 summations are over the items that both 

the users u and v have rated and 𝑟𝑢  is the average rating of 

the co-rated items of the u th user. 

The prediction score 𝑃𝑎,𝑖  for a user a, on a certain item i, 

is calculated using the following formula. 

𝑃𝑎,𝑖 = 𝑟𝑎 +  
 (𝑟𝑢,𝑖 − 𝑟𝑢 ) ∗ 𝑠𝑖𝑚(𝑎, 𝑢)𝑢∈𝑈

  𝑠𝑖𝑚(𝑎, 𝑢) 𝑢∈𝑈

 

where 𝑟𝑎  and 𝑟𝑢  are the average ratings for the user a and 

user u on all other rated items, and sim(a, u) is the 

correlation between user a and user u. The summations 

are over all the users 𝑢 ∈ 𝑈 who have rated the item i. 
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A. Clustering Algorithm 

In this work, we use a CURE [5] based clustering 

algorithm to cluster the users of the system. CURE is a 

hierarchical clustering algorithm which can identify 

clusters having non-spherical shapes and wide variances 

in size. To handle large databases, CURE employs a 

combination of random sampling and partitioning. A 

random sample drawn from the data set is first partitioned 

and each partition is partially clustered. The partial 

clusters are then clustered in a second pass to yield the 

desired clusters. The number K is input to the algorithm 

that specifies the desired number of clusters. CURE 

method first select K users arbitrarily as the initial centers 

of the K clusters respectively. For each of the remaining 

users, the distance between the user and all the cluster 

centers is calculated and the user is assigned to the 

minimum distance cluster. Next, iteratively the cluster 

centers are re-calculated until the centers do not change 

their locations any more.  

In this work, we use MovieLens-1M dataset 

(http://www.movielens.org/) for testing our algorithm. 

The dataset contains 1,000,209 anonymous ratings of 

approximately 3,900 movies made by 6,040 MovieLens 

users and 18 movie genres. Ratings are on a five star 

(integral) scale from 1 to 5. We first try to learn the 

preferences of the individual users on the basis of the 

genres of movies that they have reviewed. Assuming the 

fact that movie genre is sufficient to capture how users 

rate movies, we project the user preferences in a new, 

low-dimensional space, called User Genre Space (UGS). 

In UGS, we represent the preferences of each user as a 

vector, called user vector, in n dimensions, where n is the 

total number of genres present in the dataset. Each 

dimension in this vector is represented by a genre and the 

values of these dimensions are the weights assigned to the 

corresponding genre. For every movie that a user has 

rated, the corresponding genre is weighted by its rating. In 

case of multiple genres, all of them are assigned the same 

weightage as the rating, and are thus treated equally. 

Finally the UGS vector is normalized. 

We have given an example of movie preferences for two 

users - User1 and User2 in Table I and Table II, while the 

corresponding user vectors are shown in Figure 1 and 

Figure 2 respectively. Higher weightage for genres like 

Comedy, Thriller and Action for User1 displays the liking 

for movies with these particular themes while User2 has 

preference for Action and Adventure movies. We 

calculate the weights of the different genre from Table I 

and Table II as follows. For the Action genre, User 1 has 

rated two movies 'Deep Blue Sea' and 'The 13th Warrior'. 

Since the ratings of the two movies are 5 and 2 

respectively, therefore the Action genre is weighted by 5 

+ 2 = 7. Similarly for the Comedy genre, User1 has rated 

two movies with a rating of 4, and therefore the weight of 

the Comedy genre is 4 + 4 = 8. Note that, apart from the 

Action, the movie 'Deep Blue Sea' also belongs to Sci-Fi 

and Thriller genres. Therefore both the Sci-Fi and Thriller 

genres will also be weighted by 5. In this way, we 

calculate the weights of all the genres present in the user 

vector, and then the vector is normalized. If a user does 

not have any preference for a particular genre then the 

weight of that genre is considered as 0.0. Continuing the 

above mentioned approach, we create user vectors for all 

the remaining users. We implement our clustering 

algorithm using these user vectors. We use Euclidean 

distance to find the distance between two vectors. Once 

clustering is done, next we measure the presence of 

attribute autocorrelation in the clusters to verify whether 

users with similar demographic profiles such as age, 

gender, occupation, location, etc. are grouped in the same 

clusters. 

TABLE I 

 AN EXAMPLE OF MOVIE PREFERENCES FOR USER1  

 

TABLE II 

 AN EXAMPLE OF MOVIE PREFERENCES FOR USER 2 

Fig. 1.  A Sample User Vector for user1. 

Fig. 2.  A Sample User Vector for user2. 

Movie Genre Rating 

Saturn 3 Adventure, Sci-Fi, Thriller 5 

Excalibur Action, Drama, Fantasy, 

Romance 

5 

Total Recall Action, Adventure, Sci-Fi, 

Thriller 

4 

Tarzan the 

Fearless 

Action, Adventure 3 

Movie Genre Rating 

Deep Blue Sea Action, Sci-Fi, Thriller 5 

Runaway Bride Comedy, Romance 4 

A Christmas Story Comedy, Drama 4 

The 13th Warrior Action, Horror, Thriller 2 
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B. Attribute Autocorrelation 

It measures the co-variance of an attribute of interest with 

other attributes. For e.g. it can measure the variation of 

user preferences (ratings) with the different demographic 

features of the users, such as age, gender, occupation, 

location, etc. In our work, we use MovieLens 1M dataset 

and it has information about the demographic attributes of 

the users, such as age, gender, location and occupation. 

We can define an autocorrelation index using the age of 

the users. In the MovieLens 1M data, the age of the users 

are divided into the following seven age groups: below 

18, 18 - 24, 25 - 34, 35 - 44, 45 - 49, 50 - 55 and 56 and 

above. For simplicity we represent these age groups as 

discrete values. Age below 18 is mapped to 1, 18 - 24 to 

2, 25 - 34 to 3, 35 - 44 to 4, 45 - 49 to 5, 50 - 55 to 6 and 

56 and above to 7. Next, we consider one movie at a time 

and find how the ratings of that movie vary with respect 

to the different age groups of the users. This can be done 

as follows. 

First find the average rating of the movie. Let us denote 

this as 𝑟 . Now we consider two users i and j and calculate 

𝑐𝑖 ,𝑗 =  𝑟𝑖 − 𝑟  (𝑟𝑗 − 𝑟 ) 

 𝑐𝑖,𝑗 is the rating similarity between user i and j. 𝑟𝑖 and 𝑟𝑗 

are the ratings of user i and j on that movie.  

Let 𝑎𝑖  and 𝑎𝑗  denote the age groups of user i and user j. 

We can define age similarity 𝑤𝑖 ,𝑗  between the two users as 

follows. 𝑤𝑖 ,𝑗  = 1 if both i and j belongs to the same age 

group, and 

𝑤𝑖 ,𝑗  =
1

 𝑎𝑖 − 𝑎𝑗  + 1
 

if they belongs to different age groups. 

Now the autocorrelation index c can be defined as 

𝑐 =
  𝑤𝑖 ,𝑗𝑗 𝑐𝑖 ,𝑗𝑖

𝜎2   𝑤𝑖 ,𝑗𝑗𝑖

 

Where  

𝜎2 =
 (𝑟𝑖 − 𝑟 )2

𝑖

(n − 1)
 

Here 𝜎2 is the variance. The positive c value indicates the 

presence of attribute autocorrelation, i.e., people with 

similar age rated similarly while negative value implies 

that the ratings are dissimilar. A zero value indicates that 

the ratings are distributed independently of age. We 

measure the value of this autocorrelation index in all the 

clusters to verify whether people with similar age are 

grouped in the same clusters.  

C. Finding optimal value of K (no. of clusters): An 

adaptive approach 

The value of the attribute autocorrelation defined in the 

previous section plays a major role in determining the 

suitable value of K. Since positive values of c 

(autocorrelation index) indicate the presence of attribute 

autocorrelation in the clusters, therefore we define a 

metric PA, which measures the percentage of positive 

autocorrelation in the clusters. Next, an adaptive 

procedure is followed to determine the suitable value of 

K. Initially, we start with K=2 and find the average PA 

value across the two clusters. Then in successive iteration 

we increase the value of K exponentially as successive 

powers of 2 till for some 𝐾 = 𝐾𝑚𝑎𝑥 , the average PA value 

across all the K clusters is less than the average PA value 

of the previous K clusters. A binary search is then carried 

out within the range 𝐾𝑚𝑎𝑥 2  and 𝐾𝑚𝑎𝑥 , to find 𝐾𝑜𝑝𝑡 , the 

optimal value of K for which the average PA value of the 

K clusters is greater or equal to the average PA value of 

the preceding K clusters. Note that the above adaptive 

method ensures that if 𝐾𝑜𝑝𝑡  is the desired value of K, then 

it is found in at most 2 log 2𝐾𝑜𝑝𝑡 − 1 = 𝑂( log 2𝐾𝑜𝑝𝑡 ) 

iterations 

D. Our Recommendation Approach 

The main idea of our work is to apply some CF algorithm 

in each cluster and try to merge the prediction results 

together. For a target user, we extract the genre 

preferences of the user and represent his/her preferences 

as a vector (user vector) in n dimensions, where n is the 

total number of genres. The weights of the genres are 

assigned using the method discussed in section III (A). 

Now we need to assign the target user to one of the 

clusters. The distance between the target user and cluster 

mean of all the clusters is calculated and the user is the 

placed in the minimum distance cluster. Then we can 

apply any CF algorithm to the cluster to recommend items 

of interest to the target user. 

Algorithm: Recommend_Movies 

Step 1: Select a target user for recommendation. 

Step 2: Represent the genre preferences of the target user 

as a vector. 

Step 3: Assign weights to different genres of the vector. 

Step 4: Calculate the distance between the target user and 

mean of all the clusters. 

Step 5: Assign the target user to the minimum distance 

cluster. 

Step 5: Recommend top-N movies using any CF method. 

 

IV. EXPERIMENTAL SETTINGS 

We have tested our recommendation algorithm on the 

MovieLens 1M dataset to validate our scheme. The user 

ratings of the dataset are randomly split into two sets - 

training set (80%) and test set (20%) for testing. Ratings 

for the items in the test set were to be predicted. 

A.   Evaluation Metric Discussion 

We use Mean Absolute Error (MAE) and Root Mean 

Square Error (RMSE) [9] to evaluate the prediction 

accuracy of our recommendation algorithm. The objective 

of any recommendation algorithm is to reduce MAE and 

RMSE values. Since our system produces a list of Top-N 

recommended items, therefore MAE and RMSE are not 

sufficient to truly evaluate the recommendation quality. 

Therefore, we also use Precision and Recall metrics [6] to 

evaluate the quality of the ranked list. Precision (P) is 

defined as the ratio of relevant items selected to number 

of items selected. Precision represents the probability that 

a selected item is relevant. Recall (R) is defined as the 

ratio of relevant items selected to total number of relevant 
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items available. Recall represents the probability that a 

relevant item will be selected. 

𝑃 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
            𝑎𝑛d           𝑅 =

𝑡𝑝

𝑡𝑝 + 𝑓𝑛
  

 True Positive (tp) or a hit denotes the case where a 

product which is liked by a customer is recommended by 

the recommender system. Similarly, False Positive (fp) 

denotes the case where an item disliked by a customer has 

been recommended by the system. False Negative (fn) is 

the case when an item of customer's liking has not been 

recommended by the system. 

B.   Evaluation Metric Discussion 

We investigate two popular CF methods - user-based and 

item-based and then combine these recommendation 

methods with our framework to verify whether their 

performance is improved. We use Pearson's correlation 

coefficient [9] as the similarity metric for finding user-

user similarity while item-item similarity is captured 

using Cosine-Based similarity metric [9]. 

User-based: For user-based algorithm, we use a 

representative similarity metric – Pearson’s correlation, to 

measure the user-user similarities and use the user-based 

model in [9]. 

Item-based: For item-based algorithm, we use the vector 

cosine similarity model to compute the item-item 

similarities and use the item-based model in [9]. 

C.   Results of Clustering 

In this work, we cluster the users of the dataset according 

to their preferences for movie genres. As already 

discussed in section III, we represent the preferences of 

each user as a vector (user vector) in n dimensions, where 

n is total number of genres. The values of these 

dimensions are the normalized weights of the 

corresponding genre. We implement a CURE based 

clustering algorithm to cluster the users in K clusters. 

Once clustering is done, we next find the presence of 

Attribute Autocorrelation in the clusters using the PA 

metric (discussed earlier). PA metric measures the 

percentage of positive autocorrelation in a cluster. In 

Table III, we have shown the results of our clustering 

using different values of K.  

 

TABLE III 

 RESULTS OF CLUSTERING  

 

 

  

 

 

 

 

 

 

From Table III, we can notice that for K=2, the average 

PA value across the 2 clusters is 28.35 while that for 4 

clusters is 48.34. Since the average PA value for 4 

clusters is more than corresponding PA value for 2 

clusters, therefore, as discussed in section III (c), we next 

set K=8, and find the average PA value. In this way, we 

increment the value of K until we get a K value, 𝐾𝑚𝑎𝑥 , for 

which the average PA value is less than the average PA 

value of the previous K. It can be noted that for K=64, the 

average PA value is 65.21, which is less than the average 

PA value for K=32, which is 75.65. Next, we carry out a 

binary search between 32 and 64 to find the value of 𝐾𝑜𝑝𝑡  

,the optimal value of K for which the average PA value is 

greater or equal to the average PA value for K=32. We 

experimentally find the optimal value of K, 𝐾𝑜𝑝𝑡  as 48 

with average PA value of 79.2. We have given a 

comparative analysis of Attribute Autocorrelation (in 

terms of average PA value) for different values of K in 

Figure 3. Here base performance represents the PA value 

of the entire users' space (without clustering). We 

compare the base performance with the average PA 

values of the different clusters. From Figure 3, it can be 

clearly noted that our cluster based approach outperforms 

the base results. We can also note that the maximum PA 

is achieved for K=48, which is the optimal value of K. 

 

   

Fig. 3.  Comparison of Attribute Autocorrelation. 

D.  Recommendation Performance on MovieLens-1M 

dataset 

We apply the recommendation algorithm individually to 

each cluster to improve the scalability of the system. The 

clustering approach may however compromise the 

recommendation quality as we do not use the ratings of 

the entire users' space. The presence of Attribute 

Autocorrelation in the clusters (discussed in the previous 

section) further indicates that if we recommend only 

using the users (or items) present in the cluster of the 

target user, recommendation quality will improve. 

For our experiment, MovieLens-1M ratings are randomly 

divided into 80% training data and 20% testing data. We 

report the performance of the recommendation algorithm 

on the MovieLens-1M dataset in Table IV. In the Table, 

we make a comparative analysis of the recommendation 

performance using different evaluation metrics. Here base 

performance indicates the performance of the algorithm 

using the entire users' space (without decomposition). We 

use MAE and RMSE to evaluate the prediction accuracy 

while Precision@10 and Recall@10 are used to evaluate 

the quality of the top-10 recommended items. The bold 

numbers indicate that its value has an obvious 

improvement over the corresponding values in the base. 

Our experiments are run on a computer with Core i3 - 

2100 @ 3.10GHz x 4 CPU and 4 GB RAM. 

No. of clusters (K) PA (Average) 

2 28.35 

4 48.34 

8 60.24 

16 68.6 

32 75.65 

64 65.21 
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TABLE IV 

  RECOMMENDATION PERFORMANCE ON MOVIELENS-1M DATASET  

 P@10 

(Avg) 

R@10  

(Avg)   

MAE 

(Avg) 

RMSE 

(Avg) 

User-based     

Base 0.935 0.736 0.398 0.460 

K = 2 0.858 0.765 0.419 0.571 

K = 4 0.846 0.77 0.435 0.585 

K = 8 0.841 0.75 0.392 0.589 

K = 16 0.828 0.746 0.446 0.589 

K = 32 0.817 0.724 0.486 0.619 

K = 64 0.794 0.705 0.49 0.623 

Item-based     

Base 0.842 0.715 0.412 0.521 

K = 2 0.822 0.724 0.421 0.532 

K = 4 0.817 0.731 0.405 0.511 

K = 8 0.849 0.753 0.452 0.562 

K = 16 0.852 0.704 0.456 0.589 

K = 32 0.79 0.721 0.476 0.589 

K = 64 0.782 0.692 0.481 0.602 

From Table IV, it is clear that our algorithm is working 

fine with high precision and recall values as well as lower 

MAE and RMSE values. As for example, in Table IV, for 

K=8 (User-based case), we have an average Precision, 

Recall, MAE and RMSE of 0.841, 0.75, 0.392 and 0.589 

respectively averaged across all the 8 clusters. Thus the 

algorithm performs better in terms of Recall and MAE 

values while in terms of Precision and RMSE, the base 

performance is slightly better. It can be observed that for 

the other values of K, the values of the evaluation metrics 

are quite comparable with the base. We report the average 

recommendation time (in seconds) per user in Figure 4. It 

can be clearly observed that the recommendation time 

reduces significantly when we cluster the users' space. As 

for example, the average recommendation time per user in 

the entire users' space (base) is 10.16 seconds. However, 

when it is partitioned into 64 clusters, the corresponding 

time is 0.74 seconds, which is significantly less (by about 

92%) than the base. From Figure 4, one can easily find 

that our clustering based approach outperforms the base 

performance irrespective of the number of clusters. 

Analyzing the results of the experiments performed, we 

can conclude that our approach is efficient in reducing the 

running time without sacrificing the recommendation 

quality in most cases.  

CONCLUSION 

In this paper, we propose a Collaborative Filtering based 

recommendation technique which is made scalable by 

clustering the users' space. Our proposed approach deals 

with the Scalability problem of the CF process by 

applying the recommendation algorithm separately to the 

clusters. Experimental analysis using real datasets show 

that our model is efficient, scalable as well as maintain 

acceptable recommendation quality. In future, we have a 

plan to implement Attribute Autocorrelation on the basis 

of other demographic attributes of the user, such as 

gender, occupation and location with the aim of 

optimizing the clustering technique and the 

recommendation algorithm. 

 

     

 

Fig. 4.  Recommendation Time Per User. 
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