
An Adaptive Approach To Collaborative Filtering
Using Attribute Autocorrelation

Joydeep Das∗, Shreya Dugar†, Harsh Gupta†, Subhashis Majumder‡ and Prosenjit Gupta§
∗The Heritage Academy, Kolkata, WB, India

Email: joydeep.das@heritageit.edu
†Dept of Computer Sc. and Engg., Institute of Engineering and Management, Kolkata, WB, India

Email: shreyadugar789@gmail.com
Email: harshguptahs@gmail.com

‡Dept of Computer Sc. and Engg., Heritage Institute of Technology, Kolkata, WB, India
Email: subhashis.majumder@heritageit.edu
§NIIT University, Neemrana, Rajasthan, India

Email: prosenjit gupta@acm.org

Abstract—Recommender Systems (RS) provide a rich collection
of tools for enabling users to filter through large amount of
information available on the Web. Collaborative Filtering (CF) is
one of the most widely used and successful techniques behind the
development of RS. CF based RS recommend items by computing
similarities between users and/or items. The items recommended
to a user are those preferred by similar users. However, with the
tremendous growth in users and items on the Web, CF algorithms
suffer from serious scalability problems because similarities be-
tween every pair of users and/or items need to be computed
during the training phase. In this paper, we propose a scalable CF
method by using data clustering techniques. The proposed work
partitions the users of the CF system using an adaptive K-means
clustering algorithm and then use those partitions (clusters)
to select the similar users (neighborhood) of a target user. In
this work, we also try to determine the optimal value of K
(number of clusters). Once a target cluster is determined, the
neighborhood of the target user is selected by looking into the
similarity score between the target user and all other users in
that cluster. The basic idea is to partition the users of the RS
and apply the CF based recommendation algorithm separately to
the partitions. The cluster-based approach reduces the runtime
of the system as we avoid similarity computations over the entire
rating data. Experiments performed on MovieLens-1M dataset
indicate that our method is efficient in reducing the runtime as
well as maintaining an acceptable recommendation quality.

Keywords—Collaborative Filtering, Recommender Systems,
Clustering, Scalability.

I. INTRODUCTION

The exponential increase in the volume of available digital
information, electronic resources and on-line services has led
to the problem of information overloading - where people
face difficulties in finding their required information from an
overwhelming set of choices. Today the problem is not about
how to get correct information to make a decision, rather,
how to make a right decision out of the enormous amount of
information. This has initiated the development of information
filtering systems like Recommender Systems (RS). RS use the
opinions of a group of uses to help individuals in that group
more effectively identify content of interest from a potentially

large search space [17]. Some of the application domains
for RS include recommendations for music CDs and DVDs1,
movies2 and books3.

Collaborative Filtering (CF) [1], [10] is one of the most
widely used and successful technologies for RS. CF is a
recommendation technique that identifies similarities between
users, based on their ratings in order to select neighbors and
compute predictions for the active users, to predict the likely
preferences of a user based on the known preferences of the
other similar users. CF algorithms can be classified into two
categories: memory-based and model-based [19]. Memory-
based algorithms perform similarity computations on the entire
database to identify the K most similar users to the active user,
and then predicts rating for the active user using the ratings
of the K similar users. Examples include user-based/item-
based CF algorithms with Pearson/Vector cosine correlation
based similarity measures [2]. The two fundamental limitations
associated with memory-based approaches are data sparsity
and scalability. Since similarity computations are based on
the co-rated items and therefore it is unreliable when the
data are very sparse and the co-rated items are therefore few.
With regards to scalability, memory-based algorithms often
cannot scale well with the large number of users and items.
Model-based approaches use the pure rating data to estimate
or learn a model to make predictions. Examples of some well-
known model-based CF techniques include Bayesian network
approach [14], clustering CF approach [3] and the aspect
models [11]. Model-based approaches are more scalable than
memory-based approaches, but are often associated with ex-
pensive model building and updating.

Pennock et al. [16] proposed a hybrid memory- and model-
based approach. Given a user’s preferences for some items,
they compute the probability that a user belongs to the same
personality diagnosis by assigning the missing rating as a
uniform distribution over all possible ratings [16]. Previous
empirical studies have shown that the method is able to
outperform several other approaches for collaborative filter-

1http://www.dvdcdnow.com/
2http://www.criticker.com/
3http://www.abebooks.com/978-1-4799-6908-1/15/$31.00 c©2015 IEEE

ing [16], including the Pearson correlation coefficient method,
the Vector space similarity method and the Bayesian network
approach. However, the method neither takes the whole ag-
gregated information of the training database into account nor
considers the diversity among users when rating the non-rated
items. From our point of view, the clustering-based smoothing
could provide more representative information for the ratings.

In this paper, we present a clustering based CF algorithm
that is perfectly applicable for large datasets which are nowa-
days common in e-commerce applications. The idea is to par-
tition the users of the CF system using a clustering algorithm
and use the clusters (partitions) as neighborhood. The proposed
approach is likely to make the recommendations faster, because
the size of the group that is to be analyzed to find neighbors is
much smaller. In this work, we use a variant of K-means [9]
clustering algorithm called the adaptive K-means clustering
algorithm. We also seek to find the optimal value of K (the
number of clusters) by using a binary search based technique.
We further investigate how the recommendation quality of
our algorithm compares to other algorithms under different
practical circumstances. Our primary objective is to reduce the
overall running time without sacrificing the recommendation
quality much. This ensures scalability, allowing us to tackle
bigger datasets using limited computational resources. The
results of the experiments performed indicate that our approach
is effective in reducing the runtime of the algorithm while
maintaining an acceptable recommendation quality.

The rest of the paper is organized as follows. In section II,
we provide background information about CF and also discuss
some of the past works related to clustering based RS. Section
III outlines our proposed clustering based approach while sec-
tion IV describes our experimental framework, experimental
results, and evaluations. We conclude discussing our future
research directions in Section V.

II. BACKGROUND AND RELATED WORK

A. Collaborative Filtering Based Recommender Systems

Collaborative Filtering (CF) systems recommend products
to a target user based on the opinions or preferences of other
similar users. The basic idea behind CF is that users who
agreed on the past tend to agree on the future also. These
systems employ statistical techniques to find a set of users
known as neighbors, that have a history of agreeing with the
target user. Once a neighborhood of a user is formed, CF
systems use several algorithms to produce recommendations.

In a typical CF based application, there is a list of
m users U = {u1, u2, · · · , um} and a list of n items
I = {i1, i2, · · · , in}. Each user ui has rated a list of items
Iui . There exists a distinguished user ua ∈ U called the target
user, for whom the task of a CF algorithm is to suggest a list
of items that the user may like. Most of the CF algorithms
typically build a neighborhood of like-minded users using
some similarity measures like Pearson’s correlation coefficient
or vector cosine similarity. The idea is that given a target user
ua, compute her n similar users {u1, u2, · · · , un} and predict
ua’s preferences based on the preferences of {u1, u2, · · · , un}.
Once the neighborhood formation is complete, CF systems
generate recommendations that can be of two types:

Rating prediction: It is a numerical value, Ra,j , which
predicts the likeliness (rating) of item ij for the target user
ua. This predicted value should be within the same scale (e.g.,
from 1 to 5 rating scale) as the opinion values provided by ua.

Recommendation: It is a list of Top-N items,
TIr = {Ti1, Ti2, · · · , TpN}, that the target user will
like the most. The recommended list must not contain the
items already purchased by the target user.

B. Clustering based Recommender Systems

Clustering algorithms work by identifying groups of users
who share similar preferences. Once the clusters are created,
predictions for an individual can be made by averaging the
opinions of the other users in that cluster. Clustering techniques
usually produce less personal recommendations compared to
nearest neighbor algorithms. However, we can achieve better
performance (reduced runtime), since the size of the cluster
that must be analyzed is much smaller compared to the entire
users’ space. This enables the system to be scalable. Several
CF based recommendation algorithms incorporated clustering
methods in order to alleviate the sparsity and scalability
problems. To overcome the sparsity problem, Xue et al. [20]
proposed a CF system based on K-means clustering in order
to smooth the unrated data for individual users according to
the clusters. Jiang et al. [12] implemented a cluster-based
collaborative filtering scheme on the basis of an iterative
clustering method that exploits the inter-relationship between
users and items. To address the scalability issue, Sarwar et
al. [18] and O’Conner et al. [15] used clustering techniques
to partition the data into clusters and used a memory-based
CF algorithm such as a Pearson correlation-based algorithm
to make predictions for users within each cluster. With the
same perspective, George and Merugu [8] used a collaborative
filtering approach on the basis of a weighted co-clustering
algorithm that involves simultaneous clustering of users and
items. Das et al. [7] proposed a DBSCAN based clustering
algorithm for clustering the users, and then use algorithms
from voting theory to recommend items to an active user
depending on the cluster into which it belongs. They also
proposed a decomposition based recommendation algorithm
using multiplicatively weighted Voronoi diagram to enhance
the scalability of the system [6]. Similar decomposition based
recommendation techniques can also be found in [4] and [5].

III. PROPOSED SCHEME

In this work, we propose a scalable CF based
recommendation algorithm using a clustering technique.
The use of clusters integrate the advantages of both memory-
based and model-based CF approaches. Traditional CF
algorithms typically search the whole database to find
the neighbors of a target user. This method suffers from
scalability problem when more and more new users and
items are added to the database. In clustering approach, the
feature of the group of users in a cluster is represented by
the centroid of the cluster. The centroid is represented as an
average rating over all the users in the cluster. For a target
user, we need to compute the similarity between each cluster
and the target user, and the most similar cluster is used as

the neighborhood of the target user. We formally present our
algorithm below.

Algorithm: Cluster-based Collaborative Filtering
Step 1: Apply the clustering algorithm to produce n partitions
of users. Let U represents the entire set of users. We partition
the set U into p partitions U1, U2, · · · , Un, where Ui∩Uj = φ
for 1 ≤ i, j ≤ n; and U1 ∪ U2, · · · ∪ Un = U .

Step 2: Choose the neighborhood for a target user, ua. If
ua ∈ Ui, then the entire cluster Ui is used as the neighborhood.

Step 3: Calculate the similarity sim(ua, u) for each
user u in Ui and select the top-K most similar users (nearest
neighbors) of ua. The similarity between two users u and v
is computed using Pearson’s correlation as follows.

Sim(u, v) =

∑
i∈I

(ru,i − r̄u) (rv,i − r̄v)√∑
i∈I

(ru,i − r̄u)
2
√∑

i∈I
(rv,i − r̄v)

2

where the i ∈ I summations are over the items that both
the users u and v have rated and r̄u is the average rating of
the co-rated items of the u’th user.

Step 4: Once the neighborhood is defined, predict the
rating of a particular item for ua by the behaviors of the K
nearest neighbors. The prediction score Pa,i for a user a, on
a certain item i, is calculated using the following formula.

Pa,i = r̄a +

∑
u∈U

(ru,i − r̄u)wa,u∑
u∈U
|wa,u|

where r̄a and r̄u are the average ratings for the user a and
user u on all other rated items, and wa,u is the correlation
between user a and user u. The summations are over all the
users u ∈ U who have rated the item i.

A. Clustering Algorithm

In this work, we use a K-means based clustering algorithm
to cluster the users of the system. The number K is input to
the algorithm that specifies the desired number of clusters. The
K-means clustering method creates K clusters each of which
consists of the users who have similar preferences among
themselves. In this method, we first select K users arbitrarily
as the initial centers of the K clusters respectively. For each
of the remaining users, calculate the distance between the user
and all the cluster centers and assign the user to the minimum
distance cluster. Next, iteratively the cluster centers are re-
calculated until the centers do not change their locations any
more.

In this work, we use MovieLens-1M dataset4 for testing our
algorithm. The dataset contains 1,000,209 anonymous ratings
of approximately 3,900 movies made by 6,040 MovieLens
users and 18 movie genres. Ratings are on a five star (integral)
scale from 1 to 5. The genres present in the dataset are

4http://www.movielens.org/

Action, Adventure, Animation, Children’s, Comedy, Crime,
Documentary, Drama, Fantasy, Film-Noir, Horror, Musical,
Mystery, Romance, Sci-Fi, Thriller, War and Western. In this
work, we cluster the users of the dataset according to their
preferences of movie genres. Assuming genre is sufficient to
capture how users rate movies, we represent the preferences
of each user as a vector (preference vector) in n dimensions,
where n is the total number of genres present in the dataset.
Each dimension in this vector is represented by a genre and
the values of these dimensions are the weights assigned to the
corresponding genre. For every movie that a user has rated,
the corresponding genre is weighted by its rating. In case of
multiple genres, all of them are assigned the same weightage as
the rating, and are thus treated equally. The mapping between
the rating and its corresponding genre weight is shown in Table
I.

Table I. MAPPING BETWEEN RATING AND GENRE WEIGHT

Movie rating Genre weight
1 0.2
2 0.4
3 0.6
4 0.8
5 1.0

Table II. AN EXAMPLE OF MOVIE PREFERENCES FOR USER 1

Movie Genre Rating
Broken Arrow Action, Thriller 5

Batman Forever Action, Adventure, Comedy, Crime 4
Something to Talk About Comedy, Drama, Romance 3

Random Hearts Drama, Romance 2

Table III. AN EXAMPLE OF MOVIE PREFERENCES FOR USER 2

Movie Genre Rating
Rumble in the Bronx Action, Adventure, Crime 5

Flesh and Bone Drama, Mystery, Romance 4
Twice Upon a Yesterday Comedy, Drama, Romance 4

Night of the Creeps Comedy, Horror, Sci-Fi 2

We have given an example of movie preferences for two
users in Table II and Table III, while the corresponding prefer-
ence vectors are shown in Table IV and Table V respectively.
In Table IV, the weights of the different genres are calculated
as follows. For the Action genre, user 1 has rated two movies
’Broken Arrow’ and ’Batman Forever’ (Table II). Since the rat-
ings of the two movies are 5 and 4 respectively, and as a result
the Action genre is weighted by 1.0 + 0.8 = 1.8. We can also
notice that apart from Action, the movie ’Batman Forever’ also
belongs to Adventure, Comedy and Crime genres. Therefore
all the three genres will also be weighted by 0.8. We similarly
calculate the weights of all the genres. If a user do not have any
preference for a particular genre then the weight of that genre is
considered as 0.0. We follow the similar approach for creating
the preference vector of user 2 (Table V). Continuing the above
mentioned approach, we create preference vectors for all the
remaining users. Then we implement our clustering algorithm
using these preference vectors to cluster the users’ space into
K clusters. We use Euclidean distance to find the distance
between two vectors. Once clustering is done, next we measure
the presence of attribute autocorrelation in the clusters to

Table IV. PREFERENCE VECTOR
FOR USER 1

Movie genre Genre weight
Action 1.8

Adventure 0.8
Animation 0.0
Children’s 0.0
Comedy 1.4
Crime 0.8

Documentary 0.0
Drama 0.6
Fantasy 0.0

Film-Noir 0.0
Horror 0.0

Musical 0.0
Mystery 0.0
Romance 0.6

Sci-Fi 0.0
Thriller 1.0

War 0.0
Western 0.0

Table V. PREFERENCE VECTOR
FOR USER 2

Movie genre Genre weight
Action 1.0

Adventure 1.0
Animation 0.0
Children’s 0.0
Comedy 1.2
Crime 1.0

Documentary 0.0
Drama 1.6
Fantasy 0.0

Film-Noir 0.0
Horror 0.4

Musical 0.0
Mystery 0.8
Romance 1.6

Sci-Fi 0.4
Thriller 0.0

War 0.0
Western 0.0

verify whether users with similar demographic profiles such
as age, gender, occupation, location, etc. are grouped in the
same clusters. We use the value of attribute autocorrelation as
a parameter for determining the optimal number of clusters.

B. Attribute Autocorrelation

Analogous to the notion of spatial autocorrelation like
Geary’s or Moran’s index used in GIS [13], we define a
measure called attribute autocorrelation. It measures the co-
variance of an attribute of interest with other attributes. For
e.g. it can measure the variation of user preferences (ratings)
with the different demographic features of the user, such as
age, gender, occupation, location, etc. In our work, we use
MovieLens-1M dataset and it has information about the demo-
graphic attributes of the users, such as age, gender, location and
occupation. In this work, we define an autocorrelation index
using the gender of the users as follows.

We consider one movie at a time and find how the ratings
of that movie varies with respect to the gender of the users.
This can be done as follows:

First, find the average rating of the movie. Let us denote
this as r̄. Now we consider two users i and j and calculate

cij = (ri − r̄) (rj − r̄) (1)

cij is the rating similarity between user i and user j. ri and
rj are the ratings of user i and user j on that movie.

Let gi and gj denotes the respective gender user i and user
j. We can define a gender similarily wij between the two users
as follows.

wij = 1 if both i and j belongs to the same gender,
otherwise wij = 0.

Now the autocorrelation index c can be defined as

c =

∑
i

∑
j

wijcij

σ2
∑
i

∑
j

wij

(2)

where

σ2 =

∑
i

(ri − r̄)2

(n− 1)

Here σ2 is the variance. The positive c value indicates
that the presence of attribute autocorrelation, i.e., people with
similar gender rated similarly while negative value implies that
the ratings are dissimilar. A zero value indicates that the ratings
are distributed independently of gender. We measure the value
of this autocorrelation index in all the clusters to verify whether
people with same gender are grouped in the same clusters.
This attribute autocorrelation value will be used to determine
the best possible value of K (number of clusters). Next, we
introduce an adaptive approach to find this optimal value of
K.

C. Finding optimal value of K (no. of clusters): An adaptive
approach

The value of the attribute autocorrelation defined in the
previous section plays a major role in determining the suitable
value of K. Since positive values of c (autocorrelation index)
indicate the presence of attribute autocorrelation in clusters,
therefore we define a metric PA, which measures the percent-
age of positive autocorrelation in a cluster. Next, an adaptive
procedure is followed to determine the suitable value of K.
Initially, we start with K = 5 and find the average PA value
across all the five clusters. Then in successive iteration we
increase the value of K exponentially as successive powers
of 2 till for some K = Kmax, the average PA value across
all the K clusters is less than the average PA value of the
previous K clusters. A binary search is then carried out within
the range Kmax/2 and Kmax, to find Kopt, the optimal value
of K for which the average PA value of the K clusters is
greater or equal to the average PA value of the preceding K
clusters. Note that the above adaptive method ensures that if
Kopt is the desired value of K, then it is found in at most
(2 log2Kopt − 1) = O(logKopt) iterations.

D. Recommendation with Clusters

In order to improve the scalability of the system, we apply
the recommendation algorithm separately to the clusters to
avoid computations over the entire dataset. The main idea is
to apply some CF algorithm in each cluster and try to merge
the prediction results together. However, it may compromise
the recommendation quality as users in two different clusters
may have similarity in the rating pattern. Our objective
is to reduce the running time without compromising the
recommendation much. For a pure CF method, the only
input is the user-item matrix and the output is the prediction
score for each missing value in the matrix. For each cluster,
we actually get a submatrix from the original big user-item
matrix, and therefore we can directly apply any CF method
without any modification. For a target user, we first extract
the genre preferences of this user and then represent the
preferences of this target user as a vector (preference vector)
in n dimensions, where n is the total number of genres. The
weights of the genres are assigned using the method discussed
in section III (A). Now we need to assign the target user
to one of the clusters. The distance between the target user

and the cluster mean of all the clusters is calculated and the
user is the placed in the minimum distance cluster. Then we
recommend items (movies) of interest to the target user using
the preferences of the other similar users in the cluster.

Algorithm: Recommend Movies
Step 1: Select a target user for recommendation.
Step 2: Represent the genre preferences of the target user as
a vector.
Step 3: Assign weights to different genres of the vector.
Step 3: Calculate the distance between the target user and
the mean of all the clusters.
Step 4: Assign the target user to the minimum distance
cluster.
Step 5: Recommend top-N movies using any CF method.

IV. EXPERIMENTAL FRAMEWORK

We conducted several experiments to evaluate the effec-
tiveness of the proposed method. In this section, we describe
the experimental settings in detail. We have tested our recom-
mendation algorithm on the MovieLens-1M dataset to validate
our scheme. The user ratings of the dataset are randomly split
into two sets - observed items (80%) for training and held-out
items (20%) for testing. Ratings for the held-out items were
to be predicted.

A. Evaluation Metrics

In order to evaluate the prediction accuracy of our rec-
ommendation algorithm, we use Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE) [19]. Since our system
produces a list of Top-N recommended items, therefore MAE
and RMSE are not suffcient to truly evaluate the recommen-
dation quality. Therefore we also use F1 score metric [10]
to evaluate the quality of the ranked list. F1 score requires
another two metrics, Precision (P) which is the success in
retrieving items that is of users interest, and Recall (R), which
is the success in retrieving items that are truly of interest in
relation to the number of all items that claim to be of interest.
Now, we formally define the evaluation metrics.

MAE: MAE is defined as the average of the absolute
error. Absolute error is the difference between the predicted
rating and actual rating. Let the actual user ratings be,
{r1, r2, · · · , rn}, and predicted ratings are, {p1, p2, · · · , pn},
where n is the number of items. Then Absolute error,

E = {e1, e2, · · · , en} = {p1 − r1, p2 − r2, · · · , pn − rn}

and

MAE =

n∑
i=1

|ei|

n

Any prediction algorithm tries to minimize the MAE.

RMSE: RMSE is similar to MAE and is biased to provide
more weights to larger errors.

RMSE =

√√√√√ n∑
i=1

e2i

n

F1 score: F1 score metric can be defined as

F1 =
2 ∗ P ∗R
P +R

where
P =

tp

tp+ fp
R =

tp

tp+ fn

True Positive (tp) or a hit denotes the case where a product
which is liked by a customer is recommended by the recom-
mender system. Similarly, False Positive (fp) denotes the case
where a item disliked by a customer has been recommended
by the system. False Negative (fn) is the case when an item of
customer’s liking has not been recommended by the system.

B. Comparisons

We investigate two popular CF methods - user-based and
item-based and then combine these recommendation methods
with our framework to verify whether their performance is
improved. We use Pearson’s correlation coefficient [19] as
the similarity metric for finding user-user similarity while
item-item similarity is captured using Cosine-Based similarity
metric [19].

User-based: For user-based algorithm, we use a representa-
tive similarity metric-pearson correlation, to measure the user-
user similarities and use the user-based model in [19].

Item-based: For item-based algorithm, we use the vector
cosine similarity measure to compute the item-item similarities
and use the item-based model in [19].

C. Experimentation with Clustering Algorithm

In this work, we cluster the users of the dataset according
to their preferences for movie genres. As already discussed
in section III, we represent the preferences of each user as
a vector (preference vector) in n dimensions, where n is
total number of genres. The values of these dimensions are
the weights of the corresponding genre. We implement a K-
means based clustering algorithm to cluster the users in K
clusters. Once clustering is done, we next find the presence of
Attribute Autocorrelation in the clusters using the PA metric
(discussed earlier). PA metric measures the percentage of
positive autocorrelation in a cluster. In Table VI, we have
shown the results of our clustering using different values of
K.

Table VI. RESULTS OF CLUSTERING

No. of clusters PA
(K) (Average)

5 35.22
10 52.27
20 67.81
40 74.38
80 68.21

From Table VI, we can notice that the average PA value
across all the 5 clusters is 35.22 while that for 10 clusters is
52.27. Since the average PA value for 10 clusters is more
than corresponding PA value for 5 clusters, so we next try
with K = 20, and find the average PA value. In this way,
we increment the value of K until we get a K value, Kmax,
for which the average PA value is less than the average PA
value of the previous K. It can be noted that for K = 80, the
average PA value is 68.21, which is less than the average PA
value for K = 40. Next, we carry out a binary search between
40 and 80 to find the value of Kopt, the optimal value of K
for which the average PA value is greater or equal to the
average PA value for K = 40. In our work, the optimal value
of K, Kopt is 52 having an average PA value of 78.5. We
have given a comparative analysis of the presence of Attribute
Autocorrelation (in terms of average PA value) for different
values of K in Figure 1. Here Base performance represents the
PA value of the entire users’ space (without clustering). We
compare the Base performance with the average PA values of
the different clusters. From Figure 1, it can be clearly noted
that our cluster based approach outperforms the Base results.
We can also note that the maximum PA is achieved for K =
52, which is the optimal value of K.

Figure 1. Comparison of Attribute Autocorrelation

Figure 2. Prediction Performance on MovieLens-1M Dataset using MAE

D. Experimentation with Recommendation Algorithm

In this work, we apply the recommendation algorithm
separately to the clusters in order to reduce the running time
of the system. Our objective is to execute the algorithm only

Figure 3. Prediction Performance on MovieLens-1M Dataset using RMSE

using the ratings of that particular cluster, which allows us to
avoid the similarity computations over the entire rating dataset.
Note that, it may degrade the recommendation quality as we
lose some of the ratings in this process.

We report and compare the prediction accuracy of the
recommendation algorithm in terms of MAE and RMSE in
Figure 2 and Figure 3 respectively. In the Figures, Base
performance indicates the prediction performance of the al-
gorithm using the entire users’ space (without clustering). The
Base performance is compared with the performance of the
algorithm in the clusters. As for example, in Figure 2, we
can notice that the average MAE value (for the Item-based
case) over all the clusters is less than the base value when
the number of clusters is 40. In other cases, the MAE value
is nearly equal to the base value. Similarly, in Figure 3, it
can be noted that in terms of RMSE value, the performance
of our clustering based approach is comparable with the Base
performance. In this work, we also use F1@K to evaluate
the quality of the top-K recommended items. We report and
compare the recommendation performance in Table VII. Note
that, we present F1 (F1@10) score on position 10. Here base
performance indicates the performance of the algorithm using
the entire users’ space (without clustering). We compare the
overall performance of the algorithm in the clusters with the
Base performance. The bold numbers indicate that its value has
an improvement over the base value. In Table VII, the column
Time reports the overall running time of our recommendation
algorithm. Our experiments are run on a computer with Core
i3 - 2100 @ 3.10GHz x 4 CPU and 4 GB RAM.

Table VII. PERFORMANCE COMPARISONS ON MOVIELENS-1M
DATASET IN TERMS OF F1 AND TIME

No. of F1@10 Time
clusters (K) User-based Item-based

1 (Base) 0.821 0.797 925.3
5 0.793 0.77 523.5
10 0.838 0.785 320.3
20 0.842 0.818 210.6
40 0.849 0.821 115.32
80 0.802 0.786 90.5

From Table VII, it is clear that our algorithm is working
fine with high F1 values. As for example, for K = 10
(User-based case), we have an average F1 score of 0.838

averaged across all the 10 clusters, while the corresponding
Base value is 0.821. However, for the Item-based case, the
Base value is slightly better. For the other values of K, we
can notice similar results. It can be noted that the runtime
of the algorithm is reduced significantly when we cluster the
users’ space. As for example, the time required to test the
recommendation algorithm using all the users of the dataset
(Base) is 925.3 minutes. However, when it is partitioned into
80 clusters, we require a overall runtime of 90.5 minutes for
recommending all the users of the 80 different clusters, which
is significantly less (by about 90%) than the Base. For the other
values of K, we have similar results. The results depicted in
Table VII conclusively show that our approach is efficient in
reducing the runtime. We report the average recommendation
time (in seconds) per user in the entire users’ space (Base)
and the corresponding time in the different clusters in Figure
4. One can clearly observe that the runtime per user improves
significantly when we divide the users’ space into clusters,
and as the number of clusters increase, recommendation time
decrease.

Figure 4. Recommendation Time Per User

Analyzing the results of the experiments performed, we
can conclude that our approach is efficient in reducing the
running time without sacrificing the recommendation quality
much. This establishes that our method is scalable and it can be
used to deal with even bigger datasets with the same resources.

V. CONCLUSION

In this paper, we have presented a scalable clustering based
Recommender System. The increasing volume of customers
on the Web along with the massive already existing customer
data poses serious scalability issues for Collaborative Filtering
based recommender systems. Our proposed approach deals
with the scalability problem of the recommendation task
by applying the recommendation algorithm separately to the
clusters. The results obtained suggest that our recommendation
approach provides satisfactory recommendation quality com-
pared to the basic CF approach and at the same time improves
the runtime significantly. The focus of our future work is to use
other clustering techniques in order to generate much faster
recommendations as well as provide better recommendation
quality. We also have a plan to implement Attribute Autocor-
relation using other demographic attributes of the user, such
as age, occupation, and location. How this can be leveraged is
a matter of future research.

REFERENCES

[1] G. Adomavicius and A. Tuzhilin, “Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible
extensions,” IEEE transactions on knowledge and data engineering,
vol. 17, no. 6, pp. 734–749, 2005.

[2] J. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of predic-
tive algorithms for collaborative filtering,” in Proceedings of the 14th
Conference on Uncertainty in Artificial Intelligence, 1998, pp. 43–55.

[3] S. Chee, J. Han, and K. Wang, “Rectree: an efficient collaborative
filtering method,” in Proceedings of the 3rd International Conference
on DataWarehousing and Knowledge Discovery, 2001, pp. 141–151.

[4] A. Dalmia, J. Das, P. Gupta, S. Majumder, and D. Dutta, “Scalable
hierarchical recommendations using spatial autocorrelation,” in Pro-
ceedings of the 3rd ASE International Conference on Big Data Science
and Computing (BigDataScience, 2014), 2014.

[5] J. Das, A. K. Aman, P. Gupta, A. Haider, S. Majumder, and S. Mitra,
“Scalable hierarchical collaborative filtering using bsp trees,” in Pro-
ceedings of the International Conference on Computational Advance-
ment in Communication Circuits and Systems (ICCACCS 2014), 2014,
pp. 269–278.

[6] J. Das, S. Majumder, D. Dutta, and P. Gupta, “Iterative use of weighted
voronoi diagrams to improve scalability in recommender systems,”
in Proceedings of the 19th pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD 2015), vol. LNAI 9077, 2015,
pp. 605–617.

[7] J. Das, P. Mukherjee, S. Majumder, and P. Gupta, “Clustering-based
recommender system using principles of voting theory,” in Proceedings
of the 2014 International Conference on Contemporary Computing and
Informatics (IC3I), 2014, pp. 230–235.

[8] T. George and S. Merugu, “A scalable collaborative filtering framework
based on co-clustering,” in Proceedings of the Fifth IEEE International
Conference on Data Mining, 2005, pp. 625–628.

[9] J. Han and M. Kamber, Data Mining Concepts and Techniques. Morgan
Kaufmann Publishers, 2006.

[10] J. L. Herlocker, J. A. Konstan, and J. Riedl, “Explaining collaborative
filtering recommendations,” in Proceedings of the 2000 ACM Confer-
ence on Computer Supported Cooperative Work, ser. CSCW ’00, 2000,
pp. 241–250.

[11] T. Hofmann, “Latent semantic models for collaborative filtering,” ACM
Transactions on Information Systems, vol. 22, no. 1, pp. 89–115, 2004.

[12] X. Jiang, W. Song, and W. Feng, “Optimizing collaborative filtering by
interpolating the individual and group behaviors,” in APWeb, 2006, pp.
568–578.

[13] C. P. Lo and A. K. W. Yeung, Concepts and Techniques of Geographic
Information Systems. Prentice Hall, 2007.

[14] K. Miyahara and M. Pazzani, “Collaborative filtering with the simple
bayesian classifier,” in Proceedings of the 6th Pacific Rim International
Conference on Artificial Intelligence, 2000, pp. 679–689.

[15] M. O’Connor and J. Herlocker, “Clustering items for collaborative
filtering,” in Proceedings of the ACM SIGIR Workshop on Recommender
Systems, 1999.

[16] D. Pennock, E. Horvitz, S. Lawrence, and C. Giles, “Collaborative
filtering by personality diagnosis: a hybrid memory- and model-based
approach,” in Proceedings of the Sixteenth Conference on Uncertainty
in Artificial Intelligence (UAI), 2000.

[17] P. Resnick and H. Varian, “Recommender systems,” Communications
of the ACM, vol. 40, no. 3, pp. 56–58, 1997.

[18] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Recommender systems
for large-scale e.commerce: Scalable neighborhood formation using
clustering,” in Proceedings of the Fifth International Conference on
Computer and Information Technology, 2002, pp. 158–167.

[19] X. Su and T. Khoshgoftaar, “A survey of collaborative filtering tech-
niques,” Advances in Artificial Intelligence, vol. 2009, 2009.

[20] G. Xue, C. Lin, Q. Yang, G. Xi, H. Zeng, Y. Yu, and Z. Chen, “Scalable
collaborative filtering using cluster-based smoothing,” in Proceedings of
the 28th annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2005, pp. 114–121.

