
Scalable Hierarchical Recommendations Using Spatial
Autocorrelation

Ayushi Dalmia
IIIT Hyderabad

Hyderabad, Telengana 500032, India
ayushi.dalmia@research.iiit.ac.in

Joydeep Das
The Heritage Academy

Kolkata, West Bengal 700107, India
joydeep.das@heritageit.edu

Prosenjit Gupta
Dept. of Computer Sc. and Engg.
Heritage Institute of Technology

Kolkata, West Bengal 700107, India
prosenjit_gupta@acm.org

Subhashis Majumder
Dept. of Computer Sc. and Engg.
Heritage Institute of Technology

Kolkata, West Bengal 700107, India
subhashis.majumder@heritageit.edu

Debarshi Dutta
Dept. of Computer Science

University of Southampton, Highfield Campus
Southampton, SO17 1BJ, UK

d30190@gmail.com

ABSTRACT
Collaborative Filtering (CF) is one of the most successful
and widely used approaches behind Recommendation Al-
gorithms. CF algorithms use the known preferences of a
group of users to make recommendations or predictions of
the unknown preferences for other users. In this paper, we
deal with the Scalability issue which is one of the main chal-
lenges to the CF algorithms. In Collaborative Filtering, find-
ing similarity amongst N users is an O(N2) process. If N
is large then similarity computation becomes very expen-
sive. In this work, we propose a Quadtree based user par-
titioning technique that partitions the entire users’ space
into regions based on the location. We develop a Spatially
Aware Recommendation Algorithm, where the Recommen-
dation Algorithm is applied separately to each region and
therefore allows us to reduce the quadratic complexity as-
sociated with the CF process. The proposed work tries to
measure the Spatial Autocorrelation indices, such as Geary’s
index in the regions or cells formed by the Quadtree decom-
position. One of the main objectives of our work is to reduce
the running time as well as maintain a good quality of rec-
ommendation. This approach of recommendation using the
decomposition method makes our algorithm feasible to work
with large datasets. We have tested our algorithms on the
MovieLens and the Book-Crossing datasets.

Categories and Subject Descriptors
I.1.2 [Algorithms]; H.3.3 [Information Search and Re-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
BigDataScience ’14, August 04 - 07 2014, Beijing, China
Copyright 2014 ACM 978-1-4503-2891-3/14/08 ...$15.00.
http://dx.doi.org/10.1145/2640087.2644165.

trieval]: Information Filtering

General Terms
Algorithms, Performance

Keywords
Collaborative Filtering, Spatial Autocorrelation, Quadtrees,
Recommendation Algorithms, Scalability

1. INTRODUCTION
In today’s world, we are overwhelmed with choices; a

plethora of options are available for nearly every aspect of
our lives. We need to make choices on a daily basis, from au-
tomobiles to home theatre systems, finding Mr. or Ms. Per-
fect to selecting attorneys or accountants, movies to song,
and so on. Today the problem is not about how to get cor-
rect information to make a decision, rather, how to make a
right decision out of enormous information.

This problem of information overloading has led to the
development of information filtering systems and one such
subclass is Recommendation Systems or Recommendation
Engines. Recommendation Systems typically use the opin-
ions of a community of users (Collaborative Filtering [1, 6,
13]) to help individuals in the community to effectively iden-
tify content of interest from a potentially overwhelming set
of choices. However the majority of these Recommender
Systems focus on recommending the most relevant items to
individual users and do not take into consideration any con-
textual information, such as time, place and company of
other people. Note that in many applications it may not be
sufficient to consider only users and items, rather it would
be necessary to incorporate the contextual information into
the recommendation process in order to improve the quality
of recommendation. Several context-aware Recommender
Systems have been proposed [3, 11, 14] to incorporate con-
textual information into the existing Recommendation Algo-
rithms. However, the existing context-aware Recommender

Systems cannot efficiently combine different types of contex-
tual information, and also suffer from high computational
complexity. In this paper, we propose a location aware Rec-
ommendation Algorithm which considers both the location
of the target user and the preferences of the other users
within the same region in the recommendation process. We
partition the entire users’ space with respect to location by
using a Quadtree 1 based data structure. The primary objec-
tive of our work is to decompose the users’ space into regions
in such a way that the correlated users (users having similar
preferences over items) end up in the same regions. Spatial
Autocorrelation [9] index (Geary’s index) is applied to mea-
sure the correlation among the users in the regions resulting
from space decomposition. Quadtree partitions the entire
space into smaller regions (cells), and we offer recommenda-
tions to the users in those cells independently.

For recommendation generation, Collaborative Filtering
algorithm is applied to the different regions of the tree.
One of the motivations of our work is to cope with the
quadratic complexity typically associated with Collabora-
tive Filtering algorithms. In Collaborative Filtering, find-
ing similarity amongst N users is an O(N2) process. If
N is large then similarity computation becomes quite ex-
pensive. Decomposition avoids this quadratic blowup and
allows us to process bigger data sets even with limited com-
putational resources. As for example, if we partition a re-
gion with n users into k partitions with nearly equal sizes,
then the overall time required for performing collaborative
filtering in all those k partitions will be proportional to
k.(n/k)2 = (n2/k2).k = n2/k. So we can achieve a k order
speed up by dividing the users’ space into k partitions. Note
that though we decomposed the users’ space into smaller re-
gions and applied the Recommendation Algorithm to the
regions separately, it does not mean that two distant users
cannot have high correlation in rating. Our goal is to parti-
tion the space into smaller manageable regions and in turn
reduce the overall running time without sacrificing recom-
mendation quality. This ensures scalability, allowing us to
tackle bigger datasets. Experiments conducted indicate that
our method is effective in reducing the running time, while
maintaining an acceptable quality of recommendation.

2. PRELIMINARIES

2.1 Quadtree
A Quadtree is a tree data structure in which each internal

node has exactly four children. Quadtrees are used to par-
tition a two-dimensional space by recursively subdividing it
into four quadrants or regions. The regions may be square
or rectangular, or may have arbitrary shapes. All forms of
Quadtrees share some common features:

• They decompose space into adaptable cells.

• Each cell (or bucket) has a maximum capacity. When
maximum capacity is reached, the bucket splits.

• The tree directory follows the spatial decomposition of
the Quadtree.

2.2 Spatial Autocorrelation
1http://en.wikipedia.org/wiki/Quadtree

Spatial data analysis shows that in geographic space nearby
things are more related than distant things. Spatial data
tends to be highly self-correlated. In the same neighbor-
hood, people with similar characteristics, occupations and
backgrounds tend to cluster. The analysis of spatial data in
spatial statistics is called Spatial Autocorrelation. Spatial
Autocorrelation [9] measures the co-variance of properties
within geographic space and it deals with both attributes
and locations of spatial features. A commonly used mea-
sure of Spatial Autocorrelation is Geary’s index (c). Geary’s
Index measures the similarity of i’s and j’s attributes, cij ,
which can be calculated as follows:

cij = (zi − zj)2

where zi and zj are the values of the attribute of interest for
objects i and j.

A locational similarity wij is used in the calculation of
Geary’s index, where wij = 1 if i and j share a common
boundary, and wij = 0 if not. Geary’s index is expressed as
follows:

c =

∑
i

∑
j

wijcij

2
∑
i

∑
j

wijσ
2

where σ2 is the variance of the attribute z values, or

σ2 =

∑
i

(zi − z̄)2

(n− 1)

and

z̄ =

n∑
i

zi

n

If c = 1, the attributes are distributed independently of lo-
cation. If c < 1, similar attributes coincide with similar
locations, and if c > 1, attributes and locations are dissimi-
lar.

2.3 Collaborative Filtering
Collaborative Filtering (CF) is one of the most commonly

and widely used techniques for developing Recommendation
Engines. Collaborative Filtering, also known as Social In-
formation Filtering, is based on the principle of finding a
subset of users who have similar taste and preferences to
that of the active user, and offering recommendations to
the active user based on that subset of users. The idea is
that given an active user u, compute her n similar users
{u1, u2, · · · , un} and predict u’s preference based on the
preferences of {u1, u2, · · · , un}. Similar users mean users
who share the same kind of tastes and preferences over items.
The basic idea behind Collaborative Filtering is that users
who agreed on the past tend to agree in the future also. Col-
laborative Filtering process typically uses a large database
of preferences for items by users to predict additional items
or products a new user might like.

3. PAST WORK
A lot of work has been done in the area of Recommen-

dation Engines in the past. Examples of online Recommen-
dation Systems in the movie domain include MovieLens2,

2http://www.movielens.org/

Netflix3. They used Collaborative Filtering approach to
recommend movies. Li et al. [8] integrated GPS into Rec-
ommender System to create a location-aware Recommender
System. They explored the increasing demand of mobile
commerce and developed a Recommender System for mo-
bile commerce in tourism. Adomavicius and Tuzhilin [2]
incorporated the relevant contextual features that may ef-
fect the preferences of the user into their Recommendation
Algorithm. They developed a Context Aware Recommender
System that uses both user preferences as well as the cur-
rent context in their recommendation process. Levandoski
et al. [7] used location based rating to produce recommenda-
tions. Their work, LARS, classified three novel classes of lo-
cation based ratings, namely, spatial ratings for non-spatial
items, non-spatial ratings for spatial items, and spatial rat-
ings for spatial items. Das et al. [5] used Voronoi Diagrams
to tessellate the plane and applied the Recommendation Al-
gorithm separately in each Voronoi cell. Sarwar et al. [12]
clustered the complete user set on the basis of user-user sim-
ilarity and used the cluster as the neighborhood. O’Conner
et al. [10] use clustering algorithms to partition the item set
on the basis of user rating data.

4. OUR CONTRIBUTION
The motivation of our work comes from the property of

Preference Neighborhood often found in spatial data analy-
sis. The term Preference Neighborhood suggests that users
from a spatial region (e.g., locality) prefer items (e.g., movies,
destinations) that are noticeably different from items pre-
ferred by users from other, even adjacent regions. Preference
Neighborhood suggests that our recommendations should be
influenced by rating data history spatially close to the user.
The above described property motivated us to design a Rec-
ommendation Algorithm which will include user location as
one of the parameters. In this work, we propose a spatially-
aware Recommender System using Quadtree based space
partitioning techniques. As mentioned in Section 1, loca-
tion also allows us to decompose the problem space thereby
allowing us to potentially scale up to larger datasets.

Our system, while recommending, tries to find out the
location of the user who will receive the recommendation,
and then explores the preferences of his neighborhood us-
ing Collaborative Filtering to generate the recommended
items. We have developed two such spatially aware en-
gines, one for books and another for movies. We have used
the Book-Crossing dataset to test our algorithm. Book-
Crossing dataset4 contains 278,858 users (anonymized but
with demographic information) providing 1,149,780 ratings
(explicit/implicit) on 271,379 books. Ratings are either ex-
plicit, expressed on an integral scale from 1-10 (higher values
denoting higher appreciation), or implicit, expressed by 0.
For the movie recommender system, we have used Movie-
Lens dataset to test our algorithm. MovieLens is a Collab-
orative Filtering recommender system developed by Grou-
pLens Research Group. The dataset contains 1,000,209 anony-
mous ratings of approximately 3,900 movies made by 6,040
MovieLens users who joined MovieLens in 2000. Ratings are
on a five star (integral) scale from 1 to 5.

While recommending, our primary focus is on the location
(spatial aspect) of the user. We use longitude and latitude

3http://www.netflix.com/
4http://www.informatik.uni-freiburg.de/cziegler/BX/

Table 1: Splitting Criteria
No. of users Correlation Look ahead Split
in the region value (one level)

High High N/A Y
High Low N/A Y
Low High N/A N
Low Low positive Y

negative N

to identify the user’s location. Our main task is to par-
tition the entire users’ space into smaller regions in such a
way that the correlated users are placed in the same regions.
Quadtree is used to dissect the users’ space with respect to
location and recommendations will be provided to users in
those regions. We use Geary’s index to measure correlation
among the users in the regions resulting from Quadtree de-
composition and then recommend items with the idea that
the suggested items will be liked by the user. To offer rec-
ommendations to a user in a particular region, our system
uses the preferences of the target user and the preference
history of the other users of that region. The main idea is
to apply the CF algorithm separately to each region, and
in turn reduce the overall running time. Pearson’s correla-
tion coefficient is used to compute the similarity among the
users. In this work, we try to recommend items by comput-
ing user-user similarity among the users in the regions.

5. THE DECOMPOSITION ALGORITHM
In this work, we use a Quadtree based approach for space

decomposition. Space partitioning is done on the basis of
the cities of the users. The Book-Crossing dataset has in-
formation about the users and their locations. User loca-
tion is represented as a triplet {city, state, country}. In this
work, we use the city attribute to tessellate the space, and
in the process construct the tree. Similarly for the Movie-
Lens datasets, the zip-codes of the users are mapped to the
corresponding latitude and longitude to obtain the user co-
ordinates. To build the tree nodes (partitions), we repre-
sent each city as a 2D coordinate by their respective longi-
tudes and latitudes. Our algorithm calculates Geary’s in-
dex value for each region in the following manner. We use
book (or movie) ratings as the parameter for computing at-
tribute similarity (cij), while locational similarity (wij) is
measured by computing the distance between the cities of a
pair of users and use the inverse of the distance to compute
similarity (as discussed in section 2.2). If the index value
calculated lies within a predefined range, we can infer that
spatial autocorrelation exists in the data and the users share
similar tastes and preferences. Distances between cities are
measured using Haversine formula5, that computes great-
circle distances between two points on a sphere from their
longitudes and latitudes.

The space partitioning algorithm first finds the spatial
correlation index value for a region, and then applies some
splitting criteria (as summarized in Table 1) to split the
region into four regions. In our work, the decomposition
algorithm initially finds the spatial correlation value for the
entire region (level-0 of the tree), and then applying the
splitting criteria splits the region into four regions (level-1).
At level-1 of the tree, we have four regions, and again the

5http://www.movable-type.co.uk/scripts/latlong.htm

Figure 1: Division of the sample space into regions
by recursively subdividing it into four sub-regions

decomposition algorithm is applied to each of the regions
individually to split each of them into four different regions
(level-2). This process is continued as long as the splitting
criterion is satisfied. Figure 1 shows a typical example of
this splitting process.

According to Table 1, if the number of users in a region
is high (above some threshold), then we always split the re-
gion irrespective of the correlation value of the region. If
the number of users in a region is low (within a range) and
the correlation value is high, then we do not split the region.
However, if the number of users is low (within a range) and
correlation is also low, we have implemented a concept of
one level look ahead. Here, we split the region into four
sub-regions, and check the correlation value of each of these
sub-regions. If the correlation value of these sub-regions
is better than the correlation value of the previous region
(positive case), then we proceed with the split, otherwise
(negative case) we cancel the split.
The scheme is detailed in its algorithmic form as follows:

Algorithm Quadtree Decomposition
Step 1: Represent user location (city) as coordinates (longitude-
latitude).
Step 2: Find the spatial autocorrelation value of the entire
region (level-0 of the tree).
Step 3: Build the tree using splitting criteria.

Step 3.1: If correlation is good and number of users
in the region is low (below the threshold limit), we do not
split the region.

Step 3.2: If the number of users in a region is high
(above the threshold limit), then irrespective of the correla-
tion value we split the region.

Step 3.3: If both the number of users and correlation
value of a region is low (below threshold limit), we apply the
look ahead criteria, and consequently split(or do not split).
Step 4: Repeat steps 3 and 4 for each of the regions (tree
nodes) as long as the splitting criterion is met.

6. THE RECOMMENDATION ALGORITHM

The Recommendation Algorithm recommends a list of
items to the users in the regions with the idea that the rec-
ommended items will be liked by the users. We use Collab-
orative Filtering algorithms for recommendation and while
recommending, the algorithm considers the rating statistics
of only the neighboring users of the target user. We em-
phasize on applying the CF algorithm separately to each
region, and in turn reduce the running time. As we will
discuss in Section 7, spatial autocorrelation exists in the re-
gions, and hence it seems very likely that if we recommend
items based on the preferences of the users who share the
same neighborhood with the target user, the quality of the
recommendations will improve. For a user seeking recom-
mendation (target user), we identify the location (longitude
and latitude) of the user and accordingly map the user to his
or her destined region. We find the most likely collaborative
users for the target user by calculating Pearson’s coefficient
value [4] between the target user and all other users in the
region. The algorithm finds the top-10 users in the region
who have the highest correlation of ratings with the tar-
get user. We then choose 5 of the top rated items (books
or movies) from each of these 10 users to form a set of 50
items. For recommendation, 10 of these 50 items are chosen
depending upon the local average rating of these items. The
algorithm is briefly described below:

Algorithm Recommend Item
Step 1: Select a user for recommendation.
Step 2: Identify the location (longitude and latitude) of the
user.
Step 3: Map the user in the exact region (node) of the
Quadtree according to his/her location.
Step 4: Find a subset of users in the region who share sim-
ilar preferences for items with the active user. Select top-10
similar users.
Step 5: Select top 5 highly rated item from each of these
top-10 users to from a top set of 50 items.
Step 6: Recommend top-10 items from the top set by av-
eraging the rating of the items in the region.

7. EXPERIMENTS AND RESULTS

7.1 Pre-processing
The datasets (Book-Crossing and MovieLens) we used

have information about the items (books or movies) and
their ratings by different users across the world. We kept
our dataset confined to only the US users. Since the volume
of the dataset is huge and in our work, location is a very
important aspect, we decided to remove the users of other
locations and in the process we are left with a comprehensive
set of users. In our work, we represented the cities by their
corresponding longitudes and latitudes. The dataset was
pruned by removing users who rated relatively less number
of items, and also removing the items that were rated by
relatively less number of users.

7.2 Experimentation with Decomposition al-
gorithm

We have tested our algorithm on the Book-Crossing dataset
and the MovieLens Dataset to validate our scheme. We have
run the decomposition algorithm on the entire preprocessed
dataset. The experiment has been performed with the fol-
lowing different threshold parameters: User Threshold(n1

and n2), Correlation Threshold(CT) and Item Threshold(f).
n1 and n2 represent the minimum and maximum number of
users in a region respectively, CT is the minimum corre-
lation value a region must have for not being decomposed
further and f is the fraction of the total number of items
used for correlation calculation. Table 2 lists the decompo-
sition rule, which is as follows. If the number of users in a
region is more than n2 then we perform a split irrespective
of the correlation value. If the number of users is within
the range then we find the correlation value of the regions
after the split, and if it is found to be better, we go ahead
with the split or else we roll back to the previous state as
discussed in section 5. We have carried out the experiment
using different values for n1, n2, CT and f . It is found that
the decomposition algorithm gives better results when the
fraction of items (books or movies) is less. It is so because
the items which are not rated by a good number of users do
not have much impact on the calculations and do not de-
pict the true parameters of the location. Taking them into
consideration implies doing calculations over a less relevant
data set and hence reduces the efficiency of our algorithm.

We report the results of experiments performed on the
Book-Crossing Dataset in Tables 3 to 5, and that of the
MovieLens Dataset in Tables 6 to 8. For example, in Table
3, we can see that region 1 (entire users’ space) is decom-
posed into 4 sub-regions 1.1, 1.2, 1.3 and 1.4 after applying
the threshold criteria. Region 1.2 is divided into 1.2.1, 1.2.2,
1.2.3 and 1.2.4 as the number of users (n) in the region is
greater than n2. Similarly Region 1.2.4 is further split into
the regions 1.2.4.1, 1.2.4.2, 1.2.4.3 and 1.2.4.4. However Re-
gion 1.4 is not divided further as the correlation value of the
region using 1/8 of the books is less than 0.5, since f = 1/8
and CT = 0.5 (see Figure 1). In the Tables, we also re-
ported the Geary’s index (Spatial autocorrelation) values
for all the regions. Spatial Autocorrelation is calculated us-
ing the items rated by the users in the region. We know that
if the Geary’s index value is less than 1, then spatial correla-
tion is present, else absent. So we define a correlation range
{< 0.75, [0.75−1.0), >= 1.0} for the items and reported the
total number of items (movies or books) that fall within each
range. Regions with 0 number of users are omitted from the
table. The last two columns of the tables show the percent-
ages of items that fall below the correlation value 0.75 and
1.0 respectively. As for example, in Table 3, we notice that
on an average 99.07% of the books across all the regions fall
below correlation value 0.75 while 99.33% of the books fall
below 1.0. In Table 4 we report similar results with different
set of threshold parameter. Analyzing both the tables, we
can observe that substantial Spatial Autocorrelation exists
in the regions, and hence we can conclude that users in a
region are highly correlated. We have 2 more Tables for two
sets of threshold parameter, but for brevity we only present
the summary of those Tables in Table 5. In Table 5, we have
presented a comprehensive summary of the decomposition
results for the Book-Crossing Dataset. Here we have shown
the average correlation values across all the regions using
different threshold values. Similarly, we present the results
of our experiment with MovieLens Dataset in Tables 6 and
7 for different threshold parameter, and the corresponding
summary in Table 8. From Tables 5 and 8, we can observe
that the decomposition algorithm produces better results (in
terms of correlation values) when the fraction of items (f)
is less.

Table 2: Decomposition Rule
Fraction of Items = f

No. of Users (n) Correlation Decomposition Decision
n > n2 Ignore Split anyways

n1 < n ≤ n2 < CT Do not split
n1 < n ≤ n2 ≥ CT split
n < n1 Ignore Do not split

Table 3: Spatial Decomposition [BookCrossing Data]
[n1 = 1000; n2 = 3000; CT = 0.5; f = 0.125]

Correlation < 0.75 [0.75− 1.0) ≥ 1.0 % < 0.75 % < 1.0
Range

Region Total No. of No. of No. of
No. users books books books
1.1 1594 2535 7 10 99.33 99.61
1.2 5265 3352 6 8 99.58 99.76
1.3 857 1725 3 6 99.48 99.65
1.4 1935 2601 5 10 99.43 99.62

1.2.1 222 806 2 10 98.53 98.78
1.2.2 353 1022 4 5 99.13 99.52
1.2.3 1615 2125 8 9 99.20 99.57
1.2.4 3075 2539 12 6 99.30 99.77

1.2.4.1 653 3117 4 10 99.55 99.68
1.2.4.2 125 463 1 14 96.86 97.07
1.2.4.3 759 1729 4 10 99.20 99.43
1.2.4.4 1538 2463 7 10 99.31 99.60

Average 99.07 99.33

Table 4: Spatial Decomposition [BookCrossing Data]
[n1 = 1000; n2 = 5000; CT = 0.5; f = 0.125]

Correlation < 0.75 [0.75− 1.0) ≥ 1.0 % < 0.75 % < 1.0
Range

Region Total No. of No. of No. of
No. users books books books
1.1 1594 2535 7 10 99.33 99.33
1.2 5265 3352 6 8 99.58 99.76
1.3 857 1725 3 6 99.48 99.65
1.4 1935 2601 5 10 99.43 99.62

1.2.1 222 806 2 10 98.53 98.78
1.2.2 353 1022 4 5 99.13 99.52
1.2.3 1615 2539 12 6 99.30 99.77
1.2.4 3075 3117 4 10 99.55 99.68

Average 99.29 99.55

Table 5: Summary of Spatial Decomposition with
various threshold values [BookCrossing Data]

n1 n2 CT f No. of % < 0.75 % < 1.0
Regions (Average) (Average)

1000 3000 0.5 0.25 12 98.65 98.87
1000 3000 0.5 0.125 12 99.07 99.33
1000 5000 0.5 0.25 8 99.03 99.22
1000 5000 0.5 0.125 8 99.29 99.55

Table 6: Spatial Decomposition [MovieLens Data]
[n1 = 500; n2 = 1000; CT = 0.5; f = 0.25]

Correlation < 0.75 [0.75− 1.0) ≥ 1.0 % < 0.75 % < 1.0
Range

Region Total No. of No. of No. of
No. users movies movies movies
1.1 2844 257 295 458 25.45 54.65
1.2 1069 251 339 437 24.44 57.45
1.3 1283 261 271 448 26.63 54.29
1.4 319 230 231 431 25.78 51.68

1.1.1 248 193 167 406 25.20 47.00
1.1.2 379 232 198 370 29.00 53.75
1.1.3 1884 233 250 413 26.00 53.91
1.1.4 333 205 250 423 23.35 51.82
1.2.2 18 212 125 264 35.27 56.07
1.2.3 1051 213 242 356 26.26 56.10
1.3.1 808 253 230 387 29.08 55.52
1.3.2 475 298 225 350 34.13 59.9

1.1.3.1 117 278 95 385 36.82 49.01
1.1.3.2 192 268 145 348 35.22 54.27
1.1.3.3 961 253 236 375 29.28 56.60
1.1.3.4 614 266 263 348 30.33 60.32
1.2.3.1 501 300 224 393 32.72 57.14
1.2.3.2 33 266 157 379 33.17 52.74
1.2.3.4 517 285 232 422 30.35 55.06

Average 29.38 54.59

Table 7: Spatial Decomposition [MovieLens Data]
[n1 = 1000; n2 = 3000; CT = 0.5; f = 0.125]

Correlation < 0.75 [0.75− 1.0) ≥ 1.0 % < 0.75 % < 1.0
Range

Region Total No. of No. of No. of
No. users movies movies movies
1.1 2844 141 157 262 25.18 53.21
1.2 1069 125 116 253 25.30 48.79
1.3 1283 184 144 274 30.56 54.49
1.4 319 173 169 258 28.83 57.00

Average 27.46 53.37

Table 8: Summary of Spatial Decomposition with
various threshold values [MovieLens Data]

n1 n2 CT f No. of % < 0.75 % < 1.0
Regions (Average) (Average)

500 1000 0.5 0.25 19 29.38 54.59
500 1000 0.5 0.125 19 31.64 50.87
1000 3000 0.5 0.25 4 22.38 49.99
1000 3000 0.5 0.125 4 27.46 53.37

7.3 Experimentation with Recommendation al-
gorithm

While recommending items to a user, our algorithm con-
siders the {user, item, rating} triplets of only the collab-
orative users of the target user. As we have seen in the
previous section that Spatial Autocorrelation exists in the
regions, and therefore it seems very promising that if you
recommended only using the users in the region of the tar-
get user, recommendation quality will improve. For testing
our algorithm, we randomly split the user ratings into two
sets - observed items (80%) and held-out items (20%). Rat-
ings for the held-out items were to be predicted. Pearson’s
Correlation coefficient [4] is used as the similarity metric for
finding the collaborative users of a target user. To test the
accuracy of the algorithm, we followed a scheme: we exe-
cuted the algorithm only with those items that are rated by
both the target user and her collaborative users. The ratings
of the top-10 recommended items produced by the algorithm
were then compared with the actual ratings of those items
given by the target user to verify whether these items were
also highly rated by the target user.

Evaluation metric: Two commonly used metrics for eval-
uating the prediction accuracy of traditional collaborative
filtering algorithms are Mean Absolute Error (MAE) and
Root Mean Square Error (RMSE) [4]. We use MAE and
RMSE to evaluate the prediction accuracy while recommen-
dation quality is measured using the Recall metric [4].

MAE: MAE is defined as the average of the absolute er-
ror. Absolute error is the difference between the predicted
rating and actual rating. Let the actual user ratings be,
{r1, r2, · · · , rn}, and predicted ratings are, {p1, p2, · · · , pn},
where n is the number of items. Then absolute error,

E = {e1, e2, · · · , en} = {p1 − r1, p2 − r2, · · · , pn − rn}

and,

MAE =

n∑
i=1

|e|

n

Any prediction algorithm tries to minimize the MAE.

RMSE: RMSE is similar to MAE and is biased to provide
more weights to larger errors.

Table 9: Possible Recommendations
Customer Likes Customer Dislikes

(rating = 4 or 5) (rating = 1, 2 or 3)
Recommend True positives False positives

Do not recommend False negatives True negatives

RMSE =

√√√√√ n∑
i=1

e2i

n

Recall: The Recall metric is also known as the hit rate,
which is widely used for evaluating top-k recommender sys-
tems. Table 9 shows the different combinations of recom-
mendations that can be generated in a recommendation prob-
lem. We consider that a customer likes an item (movie or
book) if he has given a rating of 4 or 5 to that item (in a
scale of 1 to 5), otherwise dislikes it, i.e., his rating is 1, 2
or 3. A recommendation is positive if recommended rating
coincides with the actual rating given by the customer. In
our Recommender System, Recall measures what fraction of
the items liked by the customers, has been recommended by
the algorithm.

Recall =
True Positives

True Positives+ False Negatives

To evaluate the quality of overall recommendation, we
tested the algorithm for all the regions at different levels of
the tree. We report the results of the Recommendation Al-
gorithm performed on the Book-Crossing Dataset in Tables
10 to 14, and that of the MovieLens Dataset in Tables 15 to
19. In the Tables, the column T ime shows the running time
of our Recommendation Algorithm in the different regions,
while column Cum. T ime reports the cumulative running
time for the sub-regions belonging to a single region. Our
experiments are run on a computer with Core i3 - 2100 @
3.10GHz x 4 CPU and 2 GB RAM.

Table 10: Results of Recommendation
[BookCrossing Data] [n1 = 1000; n2 = 3000; CT =
0.5; f = 0.25]
Region Total MAE RMSE Recall T ime Cum.
No. Users (mins) T ime(m)
1.1 1594 0.7613 0.8379 0.9225 111.5
1.2 5265 0.8123 0.9834 0.9444 3221.33
1.3 857 0.6776 0.7381 0.9346 10.78 3458.22
1.4 1935 0.7806 0.8786 0.9599 114.61

1.2.1 222 0.8822 0.9929 0.9953 0.21
1.2.2 353 0.7884 0.8961 0.997 0.62
1.2.3 1615 0.8023 0.9103 0.9515 79.75 665.27
1.2.4 3075 0.7156 0.8007 0.9297 584.69

1.2.4.1 653 0.6304 0.6944 0.944 6.33
1.2.4.2 125 0.7514 0.7929 0.9833 0.5
1.2.4.3 759 0.7962 0.8846 0.9358 8.28 96.76
1.2.4.4 1538 0.7598 0.8425 0.9377 81.65

Average 0.7632 0.8544 0.953

In the Tables, we have reported the total running time
(in minutes) of our Recommendation Algorithm for recom-
mending all the users of a region, as well as a cumulative
running time for comparing the performance of the algo-
rithm (in terms of running time) in the sub-regions with
that of the parent region. As for example, in Table 10, we
can notice that the time required for recommending all the
users in region 1.2 is 3221.33 minutes. However, when it

Table 11: Results of Recommendation
[BookCrossing Data] [n1 = 1000; n2 = 3000; CT =
0.5; f = 0.125]
Region Total MAE RMSE Recall T ime Cum.
No. Users (mins) T ime(m)
1.1 1594 0.7514 0.8756 0.926 98.54
1.2 5265 0.8312 0.1.022 0.9259 2987.43
1.3 857 0.6823 0.9234 0.9415 9.78 3199.45
1.4 1935 0.7623 0.9123 0.8996 103.7

1.2.1 222 0.8812 1.134 0.8571 0.14
1.2.2 353 0.7882 0.8765 0.9091 0.55
1.2.3 1615 0.8143 0.9232 0.911 68.38 584.67
1.2.4 3075 0.7123 0.8234 0.9297 515.6

1.2.4.1 653 0.653 0.727 0.944 4.5
1.2.4.2 125 0.7512 0.8123 0.8939 0.4
1.2.4.3 759 0.7523 0.8923 0.9343 7.3 86.9
1.2.4.4 1538 0.7645 0.8534 0.9383 74.7

Average 0.762 0.898 0.9175

Table 12: Results of Recommendation
[BookCrossing Data] [n1 = 1000; n2 = 5000; CT =
0.5; f = 0.25]
Region Total MAE RMSE Recall T ime Cum.
No. Users (mins) T ime(m)
1.1 1594 0.7613 0.8379 0.9225 111.5
1.2 5265 0.8123 0.9834 0.9444 3221.33
1.3 857 0.6776 0.7381 0.9346 10.78 3458.22
1.4 1935 0.7806 0.8786 0.9599 114.61

1.2.1 222 0.8822 0.9929 0.9953 0.21
1.2.2 353 0.7884 0.8961 0.997 0.62
1.2.3 1615 0.8023 0.9103 0.9515 79.75 665.27
1.2.4 3075 0.7156 0.8007 0.9297 584.69

Average 0.7775 0.8797 0.954

Table 13: Results of Recommendation
[BookCrossing Data] [n1 = 1000; n2 = 5000; CT =
0.5; f = 0.125]
Region Total MAE RMSE Recall T ime Cum.
No. Users (mins) T ime(m)
1.1 1594 0.7514 0.8756 0.926 98.54
1.2 5265 0.8312 0.1.022 0.9259 2987.43
1.3 857 0.6823 0.9234 0.9415 9.78 3199.45
1.4 1935 0.7623 0.9123 0.8996 103.7

1.2.1 222 0.8812 1.134 0.8571 0.14
1.2.2 353 0.7882 0.8765 0.9091 0.55
1.2.3 1615 0.8143 0.9232 0.911 68.38 584.67
1.2.4 3075 0.7123 0.8234 0.9297 515.6

Average 0.7779 0.9363 0.9125

is decomposed into four sub-regions 1.2.1, 1.2.2, 1.2.3, and
1.2.4, we have a total running time of 665.27 minutes for all
the sub-regions, which is significantly less (by about 80%)
than the time required for recommending using the entire
region 1.2. Similarly the running time for region 1.2.4 is
584.69 minutes, while the cumulative running time for all of
its sub-regions is 96.76 minutes (reduced by about 84%). We
also reported similar comparisons in the remaining Tables.
It is clear from these Tables that the running time of the
algorithm is reduced when it is applied to the sub-regions
separately than the entire region. Note that the regions with
0 number of users are omitted from the Tables.

We use MAE, RMSE, and Recall metrics to evaluate our
Recommendation Algorithm. A Recall value of 1.0 indicates
that the algorithm is always able to recommend the hidden
items. However, a high Recall alone does not indicate good
recommendations, as by recommending the full set of items
available, one can trivially generate a Recall value of 1.0. In
the Tables, we presented the outcome of our Recommenda-

Table 14: Summary of Recommendation Results
with various Threshold Values [BookCrossing Data]

n1 n2 CT f No. of Recall MAE RMSE
Regions (Avg) (Avg) (Avg)

1000 3000 0.5 0.25 12 0.953 0.7632 0.8544
1000 3000 0.5 0.125 12 0.9175 0.762 0.898
1000 5000 0.5 0.25 8 0.954 0.7775 0.8797
1000 5000 0.5 0.125 8 0.9125 0.7779 0.9363

Table 15: Results of Recommendation
[MovieLens Data] [n1 = 500; n2 = 1000; CT = 0.5; f =
0.25]
Region Total MAE RMSE Recall T ime Cum.
No. Users (mins) T ime(m)
1.1 2844 0.6523 0.8432 0.913 4500.35
1.2 1069 0.5178 0.7321 0.8817 685.29
1.3 1283 0.4934 0.7381 0.8701 673.45 5872.44
1.4 319 0.3128 0.402 0.8276 13.35

1.1.1 248 0.3631 0.5183 0.8296 6.12
1.1.2 379 0.5764 0.7714 0.8305 18.41
1.1.3 1884 0.3128 0.4123 0.8601 1695.5 1734.31
1.1.4 333 0.3253 0.4655 0.8718 14.28

1.2.2 18 0.2886 0.4456 0.9474 0.12
1.2.3 1051 0.4779 0.6822 0.898 619.5 619.62

1.3.1 808 0.4388 0.6208 0.9101 199.5
1.3.2 475 0.4412 0.6478 0.8701 26.65 226.15

1.1.3.1 117 0.4561 0.625 0.8901 0.84
1.1.3.2 192 0.4529 0.6105 0.8925 2.14
1.1.3.3 961 0.5001 0.6567 0.9059 230.4 316.78
1.1.3.4 614 0.441 0.6297 0.9265 83.4

1.2.3.1 501 0.4832 0.6536 0.8667 43.2
1.2.3.2 33 0.4331 0.5964 0.8649 0.4 106
1.2.3.4 517 0.4592 0.6116 0.9091 62.4

Average 0.4435 0.6147 0.8824

Table 16: Results of Recommendation
[MovieLens Data] [n1 = 500; n2 = 1000; CT = 0.5; f =
0.125]
Region Total MAE RMSE Recall T ime Cum.
No. Users (mins) T ime(m)
1.1 2844 0.6534 0.8345 0.8936 4256.5
1.2 1069 0.5234 0.7423 0.8817 537.54
1.3 1283 0.4821 0.7524 0.939 529.4 5332.89
1.4 319 0.334 0.453 0.8889 9.45

1.1.1 248 0.3731 0.5234 0.918 4.3
1.1.2 379 0.5743 0.7823 0.9074 15.3
1.1.3 1884 0.3012 0.4178 0.8913 1495.76 1527.86
1.1.4 333 0.3354 0.4765 0.8947 12.5

1.2.2 18 0.2921 0.4563 1.0 0.11
1.2.3 1051 0.5032 0.7012 0.9167 483.5 483.61

1.3.1 808 0.40 0.6178 0.8901 145.63
1.3.2 475 0.425 0.648 0.8193 20.36 165.99

1.1.3.1 117 0.4432 0.631 0.9419 0.75
1.1.3.2 192 0.4523 0.6278 0.9432 2.56
1.1.3.3 961 0.511 0.6456 0.9277 216.8 289.71
1.1.3.4 614 0.4563 0.7012 0.9545 69.6

1.2.3.1 501 0.5012 0.6843 0.9155 36.7
1.2.3.2 33 0.4432 0.6024 0.8421 0.32 84.45
1.2.3.4 517 0.4452 0.6223 0.813 47.43

Average 0.4447 0.6274 0.9041

Table 17: Results of Recommendation
[MovieLens Data] [n1 = 1000; n2 = 3000; CT =
0.5; f = 0.25]
Region Total MAE RMSE Recall T ime Cum.
No. Users (mins) T ime(m)
1.1 2844 0.6523 0.8432 0.913 4500.35
1.2 1069 0.5178 0.7321 0.8817 685.29
1.3 1283 0.4934 0.7381 0.8701 673.45 5872.44
1.4 319 0.3128 0.402 0.8276 13.35

Average 0.4941 0.6856 0.8731

Table 18: Results of Recommendation
[MovieLens Data] [n1 = 1000; n2 = 3000; CT =
0.5; f = 0.125]
Region Total MAE RMSE Recall T ime Cum.
No. Users (mins) T ime(m)
1.1 2844 0.6534 0.8345 0.8936 4256.5
1.2 1069 0.5234 0.7423 0.8817 537.54
1.3 1283 0.4821 0.7524 0.939 529.4 5332.89
1.4 319 0.334 0.453 0.8889 9.45

Average 0.4982 0.6956 0.9008

Table 19: Summary of Recommendation Results
with various Threshold Values [MovieLens Data]

n1 n2 CT f No. of Recall MAE RMSE
Regions (Avg) (Avg) (Avg)

500 1000 0.5 0.25 19 0.8824 0.4435 0.6147
500 1000 0.5 0.125 19 0.9041 0.4447 0.6274
1000 3000 0.5 0.25 4 0.8731 0.4941 0.6856
1000 3000 0.5 0.125 4 0.9008 0.4982 0.6956

tion Algorithm in terms of MAE, RMSE and Recall values
for the different regions. As for example, in Table 10, re-
gion 1.1 has 1594 users and the average MAE, RMSE and
Recall values are 0.7613, 0.8379 and 0.9225 respectively av-
eraged over 1594 users. The last row of table 10 shows the
values for MAE, RMSE and Recall averaged across all the
regions. In Tables 11, 12, 13 we report similar results with
different set of threshold values. Analyzing all the Tables,
we can conclude that our algorithm is working fine with ac-
ceptable values for the different evaluation metrics. In Table
14, we have given a summary of the recommendation results
for Book-Crossing Dataset. Here we have reported the Re-
call, MAE and RMSE values averaged over all the regions.
Here Avg is abbreviation for Average. Similarly we present
the results of our Recommendation Algorithm performed on
the MovieLens Dataset in Tables 15 to 18 for different set of
threshold values, and the corresponding summary in Table
19.

We have seen in section 7.2 that Spatial Autocorrelation
exists in the decomposed regions and in this section we find
that the Recommendation Algorithm applied to those re-
gions separately, significantly improves the overall running
time, and at the same time maintain the quality of recom-
mendations (high Recall values). Therefore we can conclude
that the idea of recommendation using spatial autocorrela-
tion makes sense.

8. CONCLUSION
In our proposed Spatially Aware Recommender System

we have employed a splitting technique to first divide the
locations based on the correlation value and then we have
mapped each user to a particular location according to the
split criteria. Experimental analysis using real datasets shows
that our model is efficient and scalable. Further, it provides
quality recommendations and also minimizes the computa-
tions over irrelevant or less significant data to a large ex-
tent without degrading the efficiency of the Recommender
System. Online experimentation of the split algorithm and
the Recommendation Algorithm will be the focus of our fu-
ture work. Evaluating the Recommendation Algorithm us-
ing other metrics will be a part of our future work. We
will also try to use other metrics for finding the spatial cor-
relation and similarities between users with the aim of op-
timizing the splitting technique and the Recommendation
Algorithm.

9. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next

generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE
transactions on knowledge and data engineering, pages
734–749, 2005.

[2] G. Adomavicius and A. Tuzhilin. Context-aware
recommender systems. In Recommender Systems
Handbook, pages 217–253. Springer US, 2011.

[3] L. Baltrunas, B. Ludwig, and F. Ricci. Matrix
factorization techniques for context aware
recommendation. In Proceedings of the fifth ACM
conference on Recommender systems, 2011.

[4] B. Bhasker and K. Srikumar. Recommender Systems
in e-Commerce. McGraw-Hill Education, 2010.

[5] J. Das, S. Majumder, and P. Gupta. Voronoi based
location aware collaborative filtering. In Proceedings of
the 3rd IEEE Conference on Emerging Trends and
Applications in Computer Science (NCETACS), pages
179–183, 2012.

[6] J. L. Herlocker, J. A. Konstan, and J. Riedl.
Explaining collaborative filtering recommendations. In
Proceedings of the 2000 ACM Conference on Computer
Supported Cooperative Work, CSCW ’00, 2000.

[7] J. J. Levandoski, M. Sarwat, A. Eldawy, and M. F.
Mokbel. Lars: A location-aware recommender system.
In Proceedings of the 2012 IEEE 28th International
Conference on Data Engineering, ICDE ’12, pages
450–461, 2012.

[8] X. Li, Z. Mi, Z. Zhang, and J. Wu. A location-aware
recommender system for tourism mobile commerce. In
Proceedings of the 2nd International Conference on
Information Science and Engineering (ICISE), pages
1709–1711, 2010.

[9] C. P. Lo and A. K. W. Yeung. Concepts and
Techniques of Geographic Information Systems.
Prentice Hall, 2007.

[10] M. O’Connor and J. Herlocker. Clustering items for
collaborative filtering. In Proceedings of the ACM
SIGIR Workshop on Recommender Systems, 1999.

[11] S. Rendle, Z. Gantner, C. Freudenthaler, and
L. Schmidt-Thieme. Fast context-aware
recommendations with factorization machines. In
Proceedings of the 34th international ACM SIGIR
conference on Research and development in
Information Retrival, 2011.

[12] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Recommender systems for large-scale e.commerce:
Scalable neighborhood formation using clustering. In
Proceedings of the Fifth International Conference on
Computer and Information Technology, pages
158–167, 2002.

[13] X. Su and T. Khoshgoftaar. A survey of collaborative
filtering techniques. Advances in Artificial Intelligence,
2009.

[14] E. Zhong, W. Fan, and Q. Yang. Contextual
collaborative filtering via hierarchical matrix
factorization. In Proceedings of the SIAM
International Conference on Data Mining, 2012.

