
SCARS: A Scalable Context-Aware
Recommendation System

Suman Datta∗, Joydeep Das†, Prosenjit Gupta∗ and Subhashis Majumder∗
∗Dept. of Computer Sc. and Engg, Heritage Institute of Technology, Kolkata, WB, India

Email: sumandatta94@gmail.com
Email: subhashis.majumder@heritageit.edu

Email: prosenjit gupta@acm.org
†The Heritage Academy, Kolkata, WB, India

Email: joydeep.das@heritageit.edu

Abstract—Recommender Systems (RS) are used to provide
personalized suggestions for information, products and services
that are not already used or experienced by a user, but are
very likely to be preferred by him/her. Most of the existing RS
employ variations of Collaborative Filtering (CF) for suggesting
items relevant to users’ interests. However, CF requires similarity
computations that grows polynomially with the number of users
and items in the database. In order to handle this scalability
problem and speeding up the recommendation process, we pro-
pose a clustering based recommendation method. The proposed
work utilizes the different user attributes such as age, gender,
occupation, etc. as contextual features and then partitions the
users’ space on the basis of these attributes. We divide the
entire users’ space into smaller clusters based on the context,
and then apply the recommendation algorithm separately to
the clusters. This helps us to reduce the running time of the
algorithm as we avoid computations over the entire data. In
this work, we present a scalable CF framework that extends the
traditional CF algorithms by incorporating users context into the
recommendation process. While recommending to a target user
in a specific cluster, our approach uses the ratings of the target
user as well as the rating history of the other users in that cluster.
One of the main objectives of our work is to reduce the running
time without compromising the recommendation quality much.
This ensures scalability, allowing us to tackle bigger datasets
using the same resources. We have tested our algorithm on the
MovieLens dataset, however, our recommendation approach is
perfectly generalized. Experiments conducted indicate that our
method is quite effective in reducing the running time.

Keywords—Collaborative Filtering, Recommender Systems,
Data Clustering, Context Awareness, Scalability.

I. INTRODUCTION

Recommender Systems (RS) are software tools and tech-
niques providing suggestions for items to be of use to a user.
The suggestions relate to various decision-making processes,
such as what items to buy, what music to listen to, what
movies to watch or what online news to read. Recommendation
algorithms are extensively adopted by both research and e-
commerce applications, in order to provide an intelligent
mechanism to filter out the excess of information available
in a domain [18]. Examples of some popular RS include
product recommendation in Amazon1, movie recommendation

1http://www.amazon.com/

in MovieLens2, and music recommendation in Last.fm3.

Collaborative Filtering (CF) [2], [19] is one of the most
widely studied and widely adapted techniques behind recom-
mendation algorithms. It tries to recommend items to users
based on user-user or item-item similarities computed from
existing data, often in the form of ratings given by users.
Typical CF-based RS associates a user with a community of
like minded users based on their preferences (e.g., ratings)
over all the items, and then recommends the target user the
items liked by others in that community. Most of the earlier
approaches to recommendation algorithms involve two types of
objects, users and items, and a function that estimates the rating
for a previously unrated item. Such RS focus on recommending
the most relevant items to users and do not consider any
contextual information, such as time, place, and company of
other people. However, in many applications the most relevant
information for a user may not only depend on her prefer-
ences, but also in her context. Incorporating the contextual
information into recommendation process may improve the
overall recommendation quality. In E-commerce applications,
the intent of a purchase [13] made by a customer can be used
as contextual information. For example, the same customer
may buy from the same online store different products, like, a
book for improving her personal skills, a book as a gift, or an
electronic device for her entertainment. Similarly in data min-
ing applications, context may sometimes be defined as those
events that characterize the life stages of a customer and which
can influence a change in his/her preferences [5]. Contextual
information (e.g., time, location, mood, weather, etc.) has been
recognized as an important factor that influences the accuracy
of recommendations. For instance, John may prefer watching
action films with his brothers, but would rather choose a
romantic film with his girlfriend. In this case, the companions
(brothers vs. girlfriend) is the key contextual information
for movie recommendation. Several context-aware RS have
been proposed [4], [14] to incorporate contextual information
into the existing recommendation algorithms. However, the
existing context-aware RS cannot efficiently combine different
types of contextual information, and also suffer from high
computational complexity.

In this paper, we propose a scalable clustering-based CF

2http://www.movielens.org/
3http://www.last.fm/978-1-4799-4445-3/15/$31.00 c©2015 IEEE

method that partitions the data on the basis of different user
contexts. While recommending, our algorithm consider the
preferences of the target user as well as the preference ratings
of the other users in the neighborhood of the target user. The
decomposition algorithm partitions the entire users’ space into
smaller clusters, and we offer recommendations to the users
in those clusters independently. One of the motivations of our
work is to reduce the quadratic complexity, typically associated
with CF algorithms.

In CF, finding similarity amongst N users is an O(N2)
process. If N is large then similarity computation becomes
quite expensive. Decomposition avoids this quadratic blowup
and allows us to process bigger data sets even with limited
computational resources. As for example, if we partition a
region with n users into k partitions with nearly equal sizes,
then the overall time required for performing collaborative
filtering in all those k partitions will be proportional to
k.(n/k)2 = (n2/k2).k = n2/k. So we can achieve a k
order speed up by dividing the users’ space into k partitions.
Note that though we decomposed the users’ space into smaller
clusters and applied the recommendation algorithm to the
clusters independently, it does not mean that two distant users
cannot have high correlation in rating. It may also happen that
the recommendation quality degrades, as we recommend only
using the data of a particular cluster, and not the entire dataset.
Our goal is to partition the space into smaller manageable
clusters and in turn reduce the overall running time without
sacrificing recommendation quality. This ensures scalability,
allowing us to tackle bigger datasets using the same hardware
resources.

The rest of the paper is organized as follows: In section
II, we provide background information and also review some
of the past work related to collaborative filtering and context
aware recommender systems. Section III outlines our recom-
mendation framework while sections IV and V present our
decomposition and recommendation algorithms respectively. In
section VI, we report and analyze the experimental results. We
conclude discussing our future research directions in section
VII.

II. BACKGROUND AND RELATED WORK

A. Collaborative Filtering based Recommender Systems

Recommender systems (RS) can be broadly classified into
two groups - (i) Content-Based filtering systems [7] that
predict preferences based on the content of the items and the
interests of the users, and (ii) Collaborative Filtering (CF)
systems [9] that finds a group of users who have similar
taste and preferences over items to that of the active user,
and recommends to the user those items that were enjoyed by
others in the group. The basic premise behind CF is that users
who agreed on the past tend to agree in the future also. CF
applications typically involve very large datasets, and often it
suffers from sparsity and scalability issues.

Most of the existing CF methods based on correlation
criteria [15], singular value decomposition (SVD) [16] and
non-negative matrix factorization (NNMF) [10] provide highly
accurate predictions of ratings. However, these CF techniques
suffer from high computational complexity. The correlation-
based techniques use similarity measures such as Pearson

correlation [6] and cosine similarity [6] to determine a neigh-
borhood of like-minded users for each user and then predict the
user’s rating for a product as a weighted average of ratings of
the neighbors. But, they are computationally very expensive
as the correlation between every pair of users needs to be
computed during the training phase.

To address the scalability issue, Sarwar et al. [17] clustered
the complete user set on the basis of user-user similarity and
used the cluster as the neighborhood. In contrast, O’Conner et
al. [11] used clustering algorithms to partition the item set on
the basis of user rating data. Breese et al. [7] utilized Bayesian
network and clustering approaches in their recommendation
process to address the scalability issue. Xu et al. [21] proposed
a multiclass co-clustering model that extends the traditional
CF algorithms by incorporating correlated user-item subgroups
information in their recommendation algorithm.

In this work, we use a clustering based user partitioning
technique to address the scalability problem associated with
the CF process.

B. Context-Aware Recommender Systems

In many application domains [13], including recommender
systems, contextual information has proved to be useful for
providing more accurate predictions. Relevant contextual in-
formation does matter in recommender systems and therefore
nowadays it is becoming a common practice to incorporate
contextual information into the recommender algorithms. Con-
texts can be obtained in several ways, such as by explicitly
gathering from relevant users/items, by implicitly deriving
from data or environment, or by inferring using statistical
methods, or data mining/machine learning, etc.. Adomavicius
and Tuzhilin [3] incorporated the relevant contextual features
that may effect the preferences of the user into their rec-
ommendation algorithm. They developed a context aware RS
that uses both the user preferences as well as the current
context in their recommendation process. Adomavicius et
al. [1] presented a multidimensional recommendation model
based on multiple dimensions, i.e., user/item dimension as well
as various contextual information. Similarly, Oku et al. [12]
incorporated additional contextual dimensions (such as time,
companion, and weather) into the recommendation process and
used machine learning techniques to provide recommendations
in a restaurant recommender system.

Recent works have focused on building models that directly
integrate contextual information with traditional {user, item,
rating} relations. For instance, Zhong et al. [22] proposed
a contextual collaborative filtering algorithm (called RPMF)
to support context-aware recommendation. The assumption
behind this model is that contextual information is encoded in
or reflected by the user-specific and item-specific latent factors.
Li et al. [20] integrated GPS into Recommender System to
create a location-aware recommender system. They explored
the increasing demand of mobile commerce and developed
a recommender system for mobile commerce in tourism.
Brown et al. [8] introduce another interesting application that
allows tourists interactively share their sightseeing experiences
with remote users, demonstrating the value that context-aware
techniques can provide in supporting social activities.

III. OUR FRAMEWORK

In order to address the computational complexity of
the CF task, we propose a clustering based context aware
collaborative filtering framework that utilizes the different
contextual features to partition the users’ space. Traditional
recommender systems normally only consider the ratings of
items by users to make recommendations. However, in many
systems, rich contextual information is available, providing a
new information dimension for recommendation. We define
context as something that influences user’s decision making
process. As for example, users from one age group may prefer
items that are vastly different from another age group. Here
age is the contextual feature that influences user’s decision.
Similarly people engaged in similar professions may have
similar tastes and preferences. In this work, we use different
contexts, such as gender, age and occupation to cluster the
entire users’ space into smaller homogeneous clusters. The
primary objective of our work is to deal with the computational
complexity associated with the traditional CF algorithms. After
clustering the users’ space, we apply the recommendation
algorithm separately to the individual cluster. This allows us
to reduce the running time of the algorithm as we avoid
similarity computations over the entire user data. However,
it may degrade recommendation quality as we do similarity
computations only over a partial data (not the entire rating
data). Our primary objective is to reduce the running time
while maintaining an acceptable recommendation quality.

In this work, we have used the MovieLens-1M dataset
to test our recommendation algorithm. MovieLens is a Col-
laborative Filtering recommender system developed by Grou-
pLens Research Group. The dataset contains 1,000,209 anony-
mous ratings of approximately 3,900 movies made by 6,040
MovieLens users who joined MovieLens in 2000. Ratings
are on a five star (integral) scale from 1 to 5. We use this
dataset because it has the contextual attributes like gender,
age, occupation, etc. that are required to implement our rec-
ommender system. In order to demonstrate the applicability
of our method, we have developed a context-aware movie
recommendation system that recommend movies according to
the context of the target user.

IV. CONTEXT BASED DECOMPOSITION

In this work, we cluster the entire users’ space according
to gender, age and occupation of the user. Let U represents
the entire set of users. We partition the set U into p partitions
U1, U2, · · · , Up, where Ui ∩ Uj = φ for 1 ≤ i, j ≤ p; and
U1 ∪ U2, · · · ∪ Up = U . For any user u, if u ∈ Ui then the
recommendation algorithm use the entire cluster Ui as the
neighborhood.

Our clustering algorithm is implemented using MovieLens
dataset. The dataset has demographic information like gender,
age, occupation and location (zip-code) about the users. In
this work, we use gender, age and occupation attributes of the
user to cluster the users’ space hierarchically. Our clustering
technique is stated below.

We propose two alternative approaches (Scheme1 and
Scheme2) to partitioning the users of the dataset as defined
below.

• In Scheme1, We first divide the users on the basis
of the gender into two gender clusters (Male and
Female). Then the gender clusters are further divided
into four age clusters (A 18, A 25, A 35, and A Oth).
Cluster A 18 contains users having age less than equal
to 18. A 25 contains users having age between 19 and
25. Users having age between 26 and 35 are put in the
cluster A 35 and the rest of the users (age more than
35) are merged in A Oth. We pictorially represent this
scheme in Fig. 1.

• In Scheme2, like Scheme1, users are first split into gen-
der clusters, and then the gender clusters are further
divided into occupation clusters as shown in Fig. 2. In
Fig. 2, we can see that there are 21 occupation clusters
(O:0, O:1, O:21) for both the Male and Female
clusters. The occupations correspond to the actual
occupation of the users present in the MovieLens
dataset.

Figure 1. Clustering by gender and age

The decomposition process partitions the users’ space
into smaller clusters on the basis of the different attributes
of the users. We now apply the recommendation algorithm
individually to the clusters, and compare the performance
of the algorithm applied to the clusters separately, with the
corresponding performance while applied to the entire user
dataset (without decomposition). We will also compare the
overall performance of the recommendation algorithm applied
to clusters formed by Scheme1 with the performance in the
corresponding clusters formed as a result of Scheme2.

V. THE RECOMMENDATION ALGORITHM

As we have already clustered the users into smaller cells,
so we can start our recommendation process. We use CF
algorithms for recommendation generation. The main idea is
to apply the CF algorithm separately to the clusters and only
use the ratings of that cluster. In this work, We recommend

Figure 2. Clustering by gender and occupation

using a user based CF approach. In CF, we need to define
a similarity metric that computes the similarity between two
users. Our work uses cosine similarity metric [6] to compute
similarities between users. The cosine similarity between two
users is higher if the two users have purchased a larger set of
common items. Our system provide recommendations for the
following two categories of users.

• For an existing user in a cluster, the algorithm first
finds her collaborative users based on the similarity
score and then recommend Top-N items using the
taste and preferences of the collaborative users.

• For a new user of the system, the algorithm use the
contextual attributes like gender, age and occupation
of the user to place her in the destined cluster. The
Top-N items highly rated by the users in the cluster
are recommended to the user.

We find the collaborative users for the target user by
calculating the similarity score between the target user and all
other users in the cluster. We choose the top-K collaborative
users according to the similarity score. Next, we form a
set of top rated items (movies) by using the ratings of
the top-K collaborative users. This set include only those
items whose average rating from all the K similar users is
more than a threshold value. Then the items in this item
set is again ranked in order of their rating frequency (no.
of users rating the item). The system recommends to the
target user the top-N items from the item set not rated by the
user. We implemented the algorithm with K = 100 and N = 10.

Algorithm Recommend Item

step1: Select a target user for recommendation.

step2: Assign the user to a cluster according to her
contextual attributes (gender, age, occupation).

step3: Find top-K collaborative users of the target user
by calculating cosine similarity score.

step3.1: Find users with cosine similarity value = 1
(highly correlated).

step3.2: If this number exceeds K, consider all the users.
step3.3: If not, sort (descending) the users according to

their similarity value and select users from this sorted list
such that number of collaborative users equals K.

step4: Form a top rated item set by using the ratings
of the top-K collaborative users.

step5: Recommend top-N items from the item set that
are not rated by the target user.

VI. EXPERIMENTS AND RESULTS

We have conducted several experiments to evaluate the
effectiveness of the proposed method. In this section, we report
the result of the experiments performed and also make an
empirical analysis of the results. We have tested our recom-
mendation algorithm on the MovieLens-1M dataset to validate
our scheme. The user ratings of the dataset are randomly split
into two sets - observed items (80%) for training and held-out
items (20%) for testing. Ratings for the held-out items were
to be predicted.

A. Evaluation Metric Discussion

Two commonly used metrics for evaluating the prediction
accuracy of traditional Collaborative Filtering algorithms are
Mean Absolute Error (MAE) [6] and Root Mean Square Error
(RMSE) [6]. In this work, we use MAE and RMSE to evaluate
the prediction accuracy while quality of the recommendation
is measured using the Precision, Recall and F1 score metric.

MAE: MAE is defined as the average of the absolute
error. Absolute error is the difference between the predicted
rating and actual rating. Let the actual user ratings be,
{r1, r2, · · · , rn}, and predicted ratings are, {p1, p2, · · · , pn},
where n is the number of items. Then Absolute error,

E = {e1, e2, · · · , en} = {p1 − r1, p2 − r2, · · · , pn − rn}

and

MAE =

n∑
i=1

|ei|

n

Any prediction algorithm tries to minimize the MAE.

RMSE: RMSE is similar to MAE and is biased to provide
more weights to larger errors.

RMSE =

√√√√√ n∑
i=1

e2i

n

We have depicted the different combinations of recom-
mendation that can be generated in a typical recommendation
problem in Table I. Note that a customer likes an item (movie)
if he has given a rating of 4 or 5 to that item (in a scale of
1 to 5), otherwise dislikes it, i.e., his rating is 1, 2 or 3. A
recommendation is positive if recommended rating coincides
with the actual rating given by the customer.

Table I. POSSIBLE RECOMMENDATIONS

Customer Likes Customer Dislikes
(rating = 4 or 5) (rating = 1, 2 or 3)

Recommend True positives False positives
Do not recommend False negatives True negatives

Precision: Precision measures the degree of accuracy
of the recommendations produced by the algorithm. In our
system, Precision measures what fraction of the recommended
items are liked by the customers.

Precision =
True Positives

True Positives+ False Positives

Recall: The Recall metric is also known as the hit rate,
which is widely used for evaluating top-K recommender
systems. In our recommender system, Recall measures what
fraction of the items liked by the customers, has been
recommended by the algorithm.

Recall =
True Positives

True Positives+ False Negatives

F1 measure: F1 measure or F1 score is the harmonic
mean of Precision and Recall.

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

B. Recommendation performance on MovieLens-1M dataset

We apply the recommendation algorithm individually to
each cluster. Our objective is to execute the algorithm only
using the ratings of a particular cluster, which permits us
to avoid the similarity computations over the entire dataset.
Our experiments are performed on the MovieLens-1M dataset.
While recommending items to a user, the algorithm takes
into account only the {user, item, rating} triplets of the
collaborative users of the target user. We execute the algorithm
with K = 100 and N = 10, as discussed in section V. That
is we consider a maximum of 100 collaborative users and
recommend top-10 items to the user.

To evaluate the quality of overall recommendation, we
have tested the recommendation algorithm for all the clusters
formed as a result of the decomposition process. As mentioned
in section IV, we have clustered the users’ space using two
alternative approaches - Scheme1 and Scheme2. We report
the results of the recommendation algorithm applied to the
clusters formed by Scheme1 approach in Table II and that

of Scheme2 approach in Table III. In the Tables, we make
a comparative analysis of the recommendation performance
using different evaluation metrics. Here base performance
indicates the performance of the algorithm using the entire
users’ space (without decomposition). We compare the overall
performance in the clusters formed by the context based
decomposition method with the base performance. We use
MAE and RMSE to evaluate the prediction accuracy and
also use Precision@K, Recall@K and F1@K to evaluate the
quality of the top-K recommended items. Note that, we present
Precision (P@10), Recall (R@10) and F1 (F1@10) score on
position 10. The bold numbers indicate that its value has an
obvious improvement than the base value.

Table II. PERFORMANCE COMPARISONS ON MOVIELENS-1M
DATASET USING SCHEME1 DECOMPOSITION APPROACH.

No. of P@10 R@10 F1@10 MAE RMSE
Clusters (Avg) (Avg) (Avg) (Avg) (Avg)

Base
performance 1 0.970 0.736 0.815 0.429 0.536
Gender Split 2 0.858 0.830 0.828 0.439 0.551

Male Age Split 4 0.896 0.829 0.842 0.405 0.514
Female Age Split 4 0.903 0.766 0.804 0.436 0.521

Table III. PERFORMANCE COMPARISONS ON MOVIELENS-1M
DATASET USING SCHEME2 DECOMPOSITION APPROACH.

No. of P@10 R@10 F1@10 MAE RMSE
Clusters (Avg) (Avg) (Avg) (Avg) (Avg)

Base
performance 1 0.970 0.736 0.815 0.429 0.536
Gender Split 2 0.858 0.830 0.828 0.439 0.551

Male Occup Split 21 0.881 0.839 0.859 0.412 0.541
Female Occup Split 21 0.911 0.854 0.842 0.432 0.511

In the Tables II and III, we have reported the perfor-
mance of our recommendation algorithm averaged over all the
clusters. As for example, for Gender Split case, we have an
average Precision, Recall, F1, MAE, RMSE of 0.858, 0.830,
0.828, 0.439 and 0.551 respectively averaged across the two
clusters (Male and Female). Similarly for Male Age Split
case, we have an average Precision, Recall, F1, MAE, RMSE
of 0.896, 0.829, 0.842, 0.405 and 0.514 averaged across all
the 4 age based clusters. Here we can see that the algorithm
performs better in terms of Recall, F1, MAE and RMSE
while in terms of Precision, the base performance is slightly
better. In table III, we can note that for Male Occup Split
case, we have better Recall, F1 and MAE values over base
while base performance is better in terms of Precision and
RMSE. Since we executed the algorithm only using the ratings
of a particular cluster, it may sometimes compromise our
recommendation quality as two users in two different clusters
may have similarity in the rating patterns. However, from the
above tables, it is clear that our algorithm always performs
better (in terms of Recall) than the base performance, while
for the other evaluation metrics it has values which are nearly
equal to the base.

C. Scalability

We report the running time of our algorithm for Scheme1
and Scheme2 based recommendation approaches in Tables IV
and V respectively. Here we record the overall time required
for testing the algorithm (in minutes) in all the clusters formed
by the decomposition process. Note that, the running time
comprises of both the cluster formation time and recommen-
dation generation time for all the users of a cluster. Here

base represents the entire dataset without decomposition. Our
experiments are run on a computer with Core i3 - 2100 @
3.10GHz x 4 CPU and 4 GB RAM.

Table IV. RUNNING TIME COMPARISONS ON MOVIELENS-1M
DATASET USING SCHEME1 BASED RECOMMENDATION APPROACH.

No. of Clusters Time(Minutes)
Base 1 1233.3

Gender Split 2 845.20
Male Age Split 4 510.43

Female Age Split 4 491

Table V. RUNNING TIME COMPARISONS ON MOVIELENS-1M
DATASET USING SCHEME2 BASED RECOMMENDATION APPROACH.

No. of Clusters Time(Minutes)
Base 1 1233.3

Gender Split 2 845.20
Male Occup Split 21 258.32

Female Occup Split 21 221.20

In Table IV, we can observe that running time improves
significantly when we divide the entire dataset into smaller
cells and apply the algorithm individually to the cells. As for
example, using Scheme1 approach, for Male Age Split case,
the overall time required for recommending all the users in the
4 clusters is 510.43 minutes while that of the entire dataset is
1233.3 minutes. Thus the running time reduces by about 58%
over the base performance. Similarly for the Female Age Split
case, running time reduces by about 61%. In Table V, we can
also notice similar results, that is, clustering approach always
allow us to achieve significantly improved runtime.

From the above analysis we can conclude that our method
is effective in reducing the running time. We have also seen
in the previous section that the recommendation algorithm
produces quality recommendations when applied to the clusters
separately. Thus we achieve our goal of partitioning the users’
space into smaller cells and in turn reduce the overall running
time without sacrificing the recommendation quality much.
This ensures scalability and establishes that our method will
be effective to deal with even bigger datasets.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a clustering based scalable
context aware recommender system. We have implemented
a decomposition technique that divides the users’ space into
smaller clusters on the basis of the different contextual at-
tributes. Experimental analysis using real datasets show that
our model is efficient and scalable. Our proposed approach
deals with the Scalability problem of the CF based recommen-
dation methods by applying the recommendation algorithm
separately to the regions. Online experimentation of the clus-
tering algorithm and the recommendation algorithm will be
the focus of our future work. We will also try to use other
metrics for finding similarities between users with the aim
of optimizing the splitting technique and the recommendation
algorithm.

REFERENCES

[1] G. Adomavicius, R. Sankaranarayanan, S. Sen, and A. Tuzhilin, “In-
corporating contextual information in recommender systems using a
multidimensional approach,” ACM transactions on information systems,
vol. 23, no. 1, pp. 103–145, 2005.

[2] G. Adomavicius and A. Tuzhilin, “Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible
extensions,” IEEE transactions on knowledge and data engineering,
pp. 734–749, 2005.

[3] ——, “Context-aware recommender systems,” in Recommender Systems
Handbook, 2011, pp. 217–253.

[4] L. Baltrunas, B. Ludwig, and F. Ricci, “Matrix factorization techniques
for context aware recommendation,” in Proceedings of the fifth ACM
conference on Recommender systems, 2011.

[5] M. J. Berry and G. Linoff, Data mining techniques: for marketing, sales,
and customer support. John Wiley & Sons, Inc. New York, NY, USA,
1997.

[6] B. Bhasker and K. Srikumar, Recommender Systems in e-Commerce.
McGraw-Hill Education, 2010.

[7] J. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of predic-
tive algorithms for collaborative filtering,” in Proceedings of the four-
teenth Conference on Uncertainty in Artificial Intelligence (UAI’98),
1998, pp. 43–52.

[8] B. Brown, M. Chalmers, M. Bell, M. Hall, I. MacColl, and P. Rudman,
“Sharing the square: collaborative leisure in the city streets,” in Pro-
ceedings of the ninth conference on European Conference on Computer
Supported Cooperative Work, 2005, pp. 427–447.

[9] J. L. Herlocker, J. A. Konstan, and J. Riedl, “Explaining collaborative
filtering recommendations,” in Proceedings of the 2000 ACM Confer-
ence on Computer Supported Cooperative Work, 2000, pp. 241–250.

[10] T. Hofmann, “Latent semantic models for collaborative filtering,” ACM
transactions on information systems, vol. 22, no. 1, pp. 89–115, 2004.

[11] M. O’Connor and J. Herlocker, “Clustering items for collaborative
filtering,” in Proceedings of the ACM SIGIR Workshop on Recommender
Systems, 1999.

[12] K. Oku, S. Nakajima, J. Miyazaki, and S. Uemura, “Context-aware svm
for context-dependent information recommendation,” in Proceedings of
the 7th International Conference on Mobile Data Management, 2006,
p. 109.

[13] C. Palmisano, A. Tuzhilin, and M. Gorgoglione, “Using context to im-
prove predictive modeling of customers in personalization applications,”
IEEE transactions on knowledge and data engineering, vol. 20, no. 11,
pp. 1535–1549, 2008.

[14] S. Rendle, Z. Gantner, C. Freudenthaler, and L. Schmidt-Thieme,
“Fast context-aware recommendations with factorization machines,”
in Proceedings of the 34th international ACM SIGIR conference on
Research and development in Information Retrival.

[15] P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm, and J. Riedl, “Grou-
plens: An open architecture for collaborative filtering of netnews,” in
Proceedings of ACM conference on Computer Supported Cooperative
Work, 1994, pp. 175–186.

[16] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Application of
dimensionality reduction in recommender systems a case study,” in
WebKDD Workshop, 2000.

[17] ——, “Recommender systems for large-scale e.commerce: Scalable
neighborhood formation using clustering,” in Proceedings of the Fifth
International Conference on Computer and Information Technology,
2002, pp. 158–167.

[18] J. Schafer, J. Konstan, and J. Riedl, “Recommender systems in e-
commerce,” in Proceedings of the 1st ACM conference on Electronic
Commerce (EC-99), 1999, pp. 158–166.

[19] X. Su and T. Khoshgoftaar, “A survey of collaborative filtering tech-
niques,” Advances in Artificial Intelligence, vol. 2009.

[20] L. Xinyu, M. Zhongchun, Z. Zhenmei, and J. Wu, “A location-aware
recommender system for tourism mobile commerce,” in Proceedings
of the 2nd International Conference on Information Science and Engi-
neering (ICISE), 2010, pp. 1709–1711.

[21] B. Xu, J. Bu, C. Chen, and D. Cai, “An exploration of improving collab-
orative recommender systems via user-item subgroups,” in Proceedings
of the 21st international conference on World Wide Web (WWW’ 2012),
2012, pp. 21–30.

[22] E. Zhong, W. Fan, and Q. Yang, “Contextual collaborative filtering
via hierarchical matrix factorization,” in Proceedings of the SIAM
International Conference on Data Mining.

