

@IJRTER-2016, All Rights Reserved 186

Performance Visualization of Bubble Sort in Worst Case Using R

Programming in Personal Computer

Dipankar Das
1
, Priyanka Das

2
, Rishab Dey

3
, Sreya Modak

4

1
Assistant Professor, The Heritage Academy, Kolkata, India

2,3,4
Student, The Heritage Academy, Kolkata, India

Abstract—The present work attempts to perform a visual analysis of the performance of Bubble sort

in the worst case in a personal computer (laptop). The said algorithm is implemented using R

programming language and the run time of the Bubble sort in the worst case for the data size under

study have been recorded. For the purpose of the study, 100 observations for each data size are

recorded. For each data size, the researchers have calculated four measures namely minimum time,

maximum time, average time and median time. These four measures are visualized using scatter

plots and line charts and they are also visually compared with quadratic curves. It has been observed

that the performances of Bubble sort in all the four cases are approximately similar and

approximately follows the quadratic curves.

Keywords—Bubble sort, Worst case, Scatter plot, Line charts, Algorithm visualization

I. INTRODUCTION

 In general, the performance analysis of any algorithm can be done either by calculating the

space complexity of the algorithm or by calculating the time complexity of that algorithm. We know

that the Bubble sort is one of the simplest sorting algorithms. In the present study, the researchers

have done the performance visualization of Bubble sort in the worst case. Here, the researchers have

taken the run time of the algorithm as the performance measure. In the present day, the field of data

visualization has gained tremendous importance. In this work, the researchers have used data

visualization techniques for the empirical analysis of Bubble sort algorithm in the worst case and the

Bubble sort algorithm has been implemented using R programming language.

II. RELATED WORK

While going through the literatures on the Bubble sort algorithm, we have seen that the recent works

on the said algorithm can be classified into some broad categories, some of which are as follows: (a)

History and origin of Bubble sort, (b) Enhancement of Bubble sort or new variants of Bubble sort

and (c) Comparison of sorting algorithms.

(a) History and origin of Bubble sort: Astrachan (2003) had traced the history of Bubble sort in his

work which includes origins and performance [1].

(b) Enhancement of Bubble sort or new variants of Bubble sort: Khairullah (2013) had done

enhancement of Bubble sort, Selection sort and Insertion sort [2]. Rohil & Manisha (2014) had

proposed Run Time Bubble Sort algorithm and had compared the proposed algorithm with Bubble

sort algorithm [3]. Appiah and Martey (2015) had proposed an enhancement of Bubble sort

algorithm called Magnetic Bubble sort algorithm which performs better in cases of redundancies [4].

Mundra and Pal (2015) in their work had shown that the execution time of Bubble sort algorithm can

be improved by using a new algorithm [5]

(c) Comparison of sorting algorithms: Al-Kharabsheh, AlTurani, AlTurani and Zanoon (2013) had

compared the run time for Selection sort, Insertion sort, Merge sort, Quick sort, Bubble sort and

International Journal of Recent Trends in Engineering & Research (IJRTER)

Volume 02, Issue 10;October - 2016 [ISSN: 2455-1457]

@IJRTER-2016, All Rights Reserved 187

Grouping comparison sort using C++ [6]. Sareen (2013) had compared Bubble sort, Selection sort,

Insertion sort, Merge sort and Quick sort on the basis of their run time using C sharp language [7].

Kocher and Agrawal (2014) had analysed the performances of different comparison based sorting

algorithm including Bubble sort [8]. Alam and Chugh (2014) had compared Bubble sort, Insertion

sort, Selection sort, Quick sort, Shell sort and Heap sort on the basis of number of comparisons,

number of swap and time taken using C++ [9].

III. OBJECTIVES OF THE STUDY

To visualize the performance (Data size versus Run time in seconds) of the Bubble sort algorithm

implemented using R programming language in the worst case in a personal computer (laptop).

To visually compare the performance (Data size versus Run time in seconds) of Bubble sort

algorithm implemented using R programming language in the worst case in a personal computer

(laptop) with quadratic curve.

IV. METHODOLOGY

Step 1: Implementation of Bubble Sort algorithm in R programming language

Step 2: Observation of run time of Bubble sort in the worst case for data size one hundred (100) to

two thousand (2000) with an interval of one hundred (100). One hundred observations will be

recorded for each data size. The unit of time is second

Step 3: Calculation of the (i) minimum, (ii) maximum, (iii) average and (iv) median values of run

time of Bubble sort in the worst case for each data size i.e. from one hundred (100) to two thousand

(2000)

Step 4: Visualization of the performance of Bubble sort i.e. (i) Data size (x axis) versus Minimum

value of run time (y axis), (ii) Data size (x axis) versus Maximum value of run time (y axis), (iii)

Data size (x axis) versus Average value of run time (y axis) and (iv) Data size (x axis) versus Median

value of run time (y axis) using simple scatter plots and line charts

Step 5: Visual comparisons between the performance curves of Bubble sort and quadratic curves

System Information:
Processor: Intel(R) Core(TM) i7-4702MQ CPU @ 2.20 GHz

RAM: 8.00 GB

System type: 64-bit operating system, x64-based processor

V. DATA ANALYSIS

The scatter plots of the performances of Bubble sort in the worst case (Data size versus run time in

seconds) are given below (Figure 1):

International Journal of Recent Trends in Engineering & Research (IJRTER)

Volume 02, Issue 10;October - 2016 [ISSN: 2455-1457]

@IJRTER-2016, All Rights Reserved 188

Figure 1. Scatter plots of the performances of the Bubble sort in the worst case

The line charts of the performances of Bubble sort in the worst case (Data size versus run time in

seconds) are given below (Figure 2):

Figure 2. Line charts of the performances of the Bubble sort in the worst case

The red, blue, green and black circles in the above two figures (Figure 1 and Figure 2) represent the

minimum, maximum, average and median measures of the one hundred (100) observations of the run

International Journal of Recent Trends in Engineering & Research (IJRTER)

Volume 02, Issue 10;October - 2016 [ISSN: 2455-1457]

@IJRTER-2016, All Rights Reserved 189

time of Bubble sort in the worst case for each data size starting from one hundred (100) to two

thousand (2000) with an interval of one hundred (100).

The scatter plots of the performances of Bubble sort in the worst case (Data size versus run time in

seconds) along with quadratic curves are given below (Figure 3):

Figure 5. Scatter plots of the performances of the Bubble sort in the worst case along with quadratic curves

The dark black curves in all the four cases i.e. Data size versus minimum time, Data size versus

maximum time, Data size versus average time and Data size versus median time represent four (4)

different quadratic curves. Each of these quadratic curves is obtained by taking the top most point of

each graph as the starting point.

VI. CONCLUSION
In the present study, the main objectives of the researchers are (i) to visualize the performance of

Bubble sort in the worst case scenario in a personal computer (laptop) where the said algorithm will

be implemented using R programming language and (ii) to perform the visual comparative analysis

of the performance of Bubble sort with the quadratic curve to understand and/or interpret the result.

From the above two figures (Figure 1 and Figure 2) we observe that all the four types of measures

(i.e. minimum, maximum, average and median) show almost identical shapes. When all these

measures are plotted against quadratic curves, we observe that in all the four (4) cases the

performance of Bubble sort in the worst case (implemented using R programming language in the

personal computer under study) approximately follows the quadratic curve which is clearly evident

from the Figure 3. In this study, we have not tried to find the best possible curve which can be fitted

to the data points. The study is carried out only on one personal computer (laptop) and with a

relatively small set of data. Therefore, at this point we cannot predict what will happen if the same

experiment is carried on either large set of data or on different computers and getting suitable

answers of these possibilities will be our future scope of work.

International Journal of Recent Trends in Engineering & Research (IJRTER)

Volume 02, Issue 10;October - 2016 [ISSN: 2455-1457]

@IJRTER-2016, All Rights Reserved 190

REFERENCES
1. Astrachan, O. (2003, February). Bubble sort: an archaeological algorithmic analysis. In ACM SIGCSE Bulletin

(Vol. 35, No. 1, pp. 1-5). ACM. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.8.9358&rep=rep1&type=pdf

2. Khairullah, M. (2013, July). Enhancing Worst Sorting Algorithms. International Journal of Advanced Science and

Technology, 56, 13-26. Retrieved from http://www.sersc.org/journals/IJAST/vol56/2.pdf

3. Rohil, H., & Manisha. (2014, August). Run Time Bubble Sort – An Enhancement of Bubble Sort. International

Journal of Computer Trends and Technology, 14(1), 36-38. Retrieved from

http://www.ijcttjournal.org/Volume14/number-1/IJCTT-V14P109.pdf

4. Appiah, O., & Martey, E. M. (2015). Magnetic Bubble Sort Algorithm. International Journal of Computer

Applications IJCA, 122(21), 24-28. doi:10.5120/21850-5168

5. Mundra, J., & Pal, B. L. (2015, September). Minimizing Execution Time of Bubble Sort Algorithm. International

Journal of Computer Science and Mobile Computing, 4(9), 173-181. Retrieved from

http://ijcsmc.com/docs/papers/September2015/V4I9201531.pdf

6. Al-Kharabsheh, K. S., AlTurani, I. M., AlTurani, A. M. I., & Zanoon, N. I. (2013). Review on Sorting Algorithms

A Comparative Study. International Journal of Computer Science and Security, 7(3), 120-126. Retrieved from

http://www.cscjournals.org/manuscript/Journals/IJCSS/Volume7/Issue3/IJCSS-877.pdf

7. Sareen, P. (2013, March). Comparison of Sorting Algorithms (On the Basis of Average Case). International

Journal of Advanced Research in Computer Science and Software Engineering, 3(3), 522-532. Retrieved from

https://www.ijarcsse.com/docs/papers/Volume_3/3_March2013/V3I3-0319.pdf.

8. Kocher, G., & Agrawal, N. (2014, March). Analysis and Review of Sorting Algorithms. International Journal of

Scientific Engineering and Research, 2(3), 81-84. Retrieved from

http://www.ijser.in/archives/v2i3/SjIwMTMxODE=.pdf

9. Alam, M., & Chugh, A. (2014, March). Sorting Algorithm: An Empirical Analysis. International Journal of

Engineering Science and Innovative Technolog, 3(2), 118-126. Retrieved from http://www.ijesit.com/Volume

3/Issue 2/IJESIT201402_16.pdf

