B.TECH / EE /5TH SEM/ ELEC 3132/2017 ILLUMINATION ENGINEERING (ELEC 3132)

Time Allotted : 3 hrs	Full Marks : 70
-----------------------	-----------------

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A (Multiple Choice Type Questions)

1.	Choose the correct alternative for the following:					$10 \times 1 = 10$
	(i)	The unit of soli (a) lumen	d angle is (b) radian	(c)) steradian	(d) candela.
	(ii) Which of the following lamps gives nearly mono (a) Sodium vapour lamp (b) GLS lamp (c) Fluorescent lamp (d) Mercury v				_	
				(b) Luminous flux (d) Wavelength.		
	(iv)	Which gas is so (a) Argon			_	s? (d) Carbon dioxide.
	(v)	Melting point of (a) 2000°C	f tungsten is (b) 2500°C	(c)	2655°C	(d) 3400°C.
	(vi)	When a sodium (a) pink	vapor lamp is (b) yellow			cially the color is (d) blue.
	(vii)	The colour tem (a) 50K		_	nt is around 600K	(d) 6000K.
(e least depends on (b) type of reflector used (d) ambient temperature.		

B.TECH / EE /5TH SEM / ELEC 3132/2017

- (ix) Power factor is highest in case of
 - (a) Mercury vapour lamp
- (b) Fluorescent lamp
- (c) Sodium vapour lamp
- (d) Incandescent lamp.
- (x) Integrating sphere is used to measure
 - (a) luminance

(b) luminous flux

(c) luminous intensity

(d) wavelength.

Group - B

- 2. (a) Briefly discuss the construction and principle of operation of a bench photometer with the help of a neat diagram. Name the different types of photometer head used.
 - (b) Define existence of a source of light. What is its unit?
 - (c) Why do we use an auxiliary lamp in integrating sphere?

$$(3+2+2) + (1+1) + 3 = 12$$

- 3. (a) Differentiate between photopic and scotopic vision. What do you mean by mesopic vision?
 - (b) What are zonal lumens?
 - (c) What do you mean by cosine error in a luxmeter? How is it eliminated?

$$(4+1)+4+3=12$$

Group - C

- 4. (a) Briefly discuss the construction and principle of operation of low pressure sodium vapour lamp with the help of a neat diagram.
- (b) What do you mean by stroboscopic effect? How is it eliminated?

$$7 + (1 + 4) = 12$$

- 5. (a) Distinguish between thermal and glow starters used in fluorescent lamp.
 - (b) State Wien's displacement law.
 - (c) State the functions of choke used in fluorescent lamp.
- (d) Briefly explain the principle of operation of Light Emitting Diode.

$$(3+3) + 1 + 2 + 3 = 12$$

Group - D

- 6.(a) An illumination on the working plane of 300 lux is required in a classroom 20 m \times 15 m in size. The lamps are required to be hung 3 m above the working plane.
 - (i) Which type of lamp is used for the design and why?
 - (ii) What is the efficacy of the lamp?
 - (iii) Assuming utilisation factor of 0.5, candle power depreciation of 15%, estimate the number and wattage rating of the lamps.
 - (iv) Draw the disposition of the lamps.
 - (v) Determine space height ratio of your design.
 - (b) Define Maintenance Factor.
 - (c) Distinguish between disability glare and discomfort glare.

$$(2+1+2+3+1)+1+2=12$$

- 7. (a) Explain the point to point method of indoor lighting design. What are the disadvantages of this method?
 - (b) What are the different types of lighting installations used in factory lighting?
 - (c) The walls of the lobby area in an office building have a reflectance of 50%. The recommended illuminance range is as follows:

Type of Activity	Illuminance Category	Range of Illuminance (lux)
Public spaces with dark surroundings	A	20 - 30 - 50
Simple orientation for short temporary visits	В	50 - 75 - 100
Working spaces where visual tasks are only occasionally performed	С	100 - 150 - 200

(i) Select the illuminance category from the above table, giving proper reason. The lobby area will be visited by occupants of any age.

B.TECH / EE /5TH SEM / ELEC 3132/2017

(ii) Select proper weighting factors from the following table:

Room and Occupant	Weighting Factors			
Characteristics	-1	0	+1	
Occupants' age	Under 40	40 - 55	Above 55	
Room surface reflectance	Greater than 70%	30 – 70 %	Less than 30%	

(iii) Determine the recommended illuminance level for the lobby area. Justify your answer.

$$(2+2)+3+(2+2+1)=12$$

Group - E

- 8. (a) What are the classifications of roads according to BIS1981? Briefly describe each type.
 - (b) Distinguish between cut-off, semi cut-off and non cut-off luminaires used in road lighting.
 - (c) What are the different types of arrangement of road lighting luminaires according to the width of the road and mounting height of the luminaires?
- (d) Define beam of a luminaire.

$$4+3+4+1=12$$

- 9. (a) What do you mean by waste light factor?
 - (b) Distinguish between transverse, longitudinal and overall uniformity.
 - (c) The front of a building measuring 60m × 15m is to be floodlighted by means of projectors placed at a distance of 15m from the wall. The average illumination required is 50 lux.
 - (i) Which lamp is used for the design and why?
 - (ii) Assuming waste light factor of 1.2, maintenance factor of 0.6 and coefficient of utilisation of 0.5, determine the number of projectors used.
 - (iii) Determine the beam angle of the projector.
 - (d) What do you mean by IP code of the luminaires?

$$2 + 3 + (1 + 2 + 2) + 2 = 12$$

ELEC 3132 3 ELEC 3132