MCA /1st SEM/MCAP 1103/2017

NUMERICAL AND STATISTICAL TECHNIQUES (MCAP 1103)

Time Allotted: 3 hrs

Full Marks: 70

 $10 \times 1 = 10$

(d) 3.

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and

<u>Any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following:
 - (i) There are 8 red, 7 blue and 6 green balls in a box. One ball is picked up randomly. What is the probability that it is neither blue nor green? (a) $\frac{2}{3}$ (b) $\frac{8}{21}$ (c) $\frac{9}{22}$ (d) $\frac{3}{7}$.
 - (ii) For the p.d.f.
 - f(x) = (1/4), -2 < x < 2 $= 0, \quad \text{otherwise}$

Then the value of E(X) is

(a) 1 (b) -1 (c) 0

- (iii) The mean of the Binomial distribution b(10, 2/5) is (a) 4 (b) 6 (c) 5 (d) 0.
- (iv) If $\hat{\theta}$ is the estimator of the parameter θ , then $\hat{\theta}$ is called unbiased if (a) $E(\hat{\theta}) > \theta$ (b) $E(\hat{\theta}) < \theta$ (c) $E(\hat{\theta}) = \theta(d)$ (iv) $E(\hat{\theta}) \neq \theta$.
- (v) A passing student is failed by an examiner, it is an example of

 (a) type-I error
 (b) type-II error
 (c) best decision
 (d) all of the above.
- (vi) If f(x) is continuous in the interval (a, b) and if f(a) and f(b) are opposite signs, then there is
 (a) at least one root of f(x) = 0 between a and b

(b) at most one root of f(x) = 0 between a and b

```
(c) there is no real root of f(x) = 0 between a and b
```

MCA /1st SEM/MCAP 1103/2017

	(vii)	E ⁻¹ is equivalent to							
		(a) $1-\Delta$ (b) $1+\Delta$							
		(c) 1 (d) None of these.							
	(;;;)	If $f(y)$ is a polynomial of degree p , then $A^{p}f(y)$ is							
	(viii)	(a) 0 (b) constant							
		(c) I (d) none of these.							
	(ix)	Method of bisection is							
		(a) conditionally convergent (b) always convergent							
		(c) non-convergent (d) none of these.							
	(x)	When a Guess elimination method is used to solve $AX = B$. A is							
		transformed to a							
		(a) unit matrix (b) lower triangular matrix							
		(c) diagonal matrix (d) upper triangular matrix.							
		Group – B							
2.	(a)	 (i) If the events A₁ and A₂ are such that P(A₁) ≠ 0 and P(A₂) ≠ 0 and A₁ is independent of A₂, then prove that A₂ is independent of A₁. (ii) If A₁ and A₂ are independent events, then so are A₁^c and A₂^c. 							
	(b)	A discrete random variable <i>X</i> has the following probability function:							
		X :0 1 2 3 4 5 6 7							
		$P(X=x): 0 \ k \ 2k \ 2k \ 3k \ k^2 \ 2k^2 \ 7k^2+k$							
		(i) find k.							
		(ii) evaluate $P(0 < X < 5)$							
		(iii) $P(X \ge 5)$.							
		(3+3) + (2+2+2) = 12							
3.	(a)	In a certain factory producing razor blades, there is a small chance, 1/500, for any blade to be defective. The blades are in packets of 10. Use Poisson distribution to calculate the approximate number of							

defectives in a packet.
(b) State Chebyshev's Inequality and explain it's significance. What is the probability that the number of driving licences issued by Rod Transport Authority in a specific month is between 64 and 184, if the number of driving licences issued is a random variable with mean 124 and standard deviation 7.5?

packets containing (i) no defective (ii) one defective and (iii) two

$$(2+2+2) + (3+3) = 12$$

MCAP 1103

2

MCA /1st SEM/MCAP 1103/2017

MCA /1st SEM/MCAP 1103/2017

- Group C
- 4. (a) A random sample of size 1 is drawn from a Poisson population with parameter λ . Find an unbiased estimator of λ^2 .
 - (b) If T_1 and T_2 are statistics with $E(T_1) = \theta_1 + \theta_2$ and $E(T_2) = \theta_1 \theta_2$, find unbiased estimator of θ_1 and θ_2 .

6 + 6 = 12

- 5. (a) Distinguish between the following, in context of hypothesis testing: (i) test statistic and (ii) critical region.
 - (b) In order to test whether a coin is perfect, the coin is tossed 5 times. The null hypothesis of perfectness of the coin is rejected if more than 4 heads are obtained.
 - (i) What is the probability of Type I error?
 - (ii) Find the probability of Type II error when the corresponding probability of head is 0.2.

(4+2) + (3+3) = 12

Group - D

- 6. (a) Using Lagrange's method of interpolation, find the polynomial P(x) of degree 2 such that : P(1)=1, P(3)=27, P(4)=64.
 - (b) The speed, **v** of a car, **t** seconds after it starts, is shown in the following table:

t(s)	0	12	24	36	48	60	72	84	96	108	120
v(m/s)	0	3.6	10.08	18.9	21.9	18.54	10.26	5.40	4.5	5.4	9

Using Simpson's 1/3rd rule, find the distance travelled by the car in 2 minutes.

(c) Evaluate the sum S = $\sqrt{3} + \sqrt{5} + \sqrt{7}$ to 4 significant digits and find its absolute and relative errors.

5 + 5 + 2 = 12

- 7. (a) Suppose 1.414 is used as an approximation to $\sqrt{2}$. Find the absolute and relative errors.
 - MCAP 1103

(b) Apply Newton's backward interpolation to find y = f(x) at x = 4.12 from the following table :

х	0	1	2	3	4	5	
у	1	2	4	8	16	32	

(c) Using Simpson's $1/3^{rd}$ rule evaluate $\int_{1}^{2} e^{\frac{-x}{2}}$, by dividing the range into 6 equal parts.

2 + 6 + 4 = 12

Group – E

- 8. (a) Evaluate y(0.1) using Euler's method when $\frac{dy}{dx} = 1 y$, y(0) = 0 taking h = 0.01.
 - (b) Find the real root of $3x e^x = 0$ using bisection method.
 - (c) Evaluate y(0.2) using Runge-kutta method of second order when $\frac{dy}{dx} = y - x$, y(0) = 2 taking h = 0.1. 3 + 5 + 4 = 12
- 9. (a) Using Bisection Method, find the real root of the equation $f(x) = x^3 3x 5 = 0$, upto 2 decimal places.
 - (b) Solve the following system of equations using the Gauss elimination method:

$$10x + 2y - 3z = 19,$$

 $3x + 10y + 2z = 18,$
 $x + y + 10z = 13.$

(c) Use Regula-Falsi method to find the positive root of xe^x = cos x, correct upto 2 decimal places.

4

4 + 4 + 4 = 12