B.TECH/ME/5 TH SEM/MECH 3143/2017				(viii)	i) A turbomachine is classified as radial or axial or mixed, depending on		
TURBO MACHINERY (MECH 3143)					the flow direction across the (a) rotor passage (c) exit pipe	(b) stator passage (d) volute casing.	
Time Al	lotted : 3 hrs	Full Marks : 70		(iv)	Compression ratio for compressors is		
	Figures out of the right margin indicate full marks.			(IX)	(a) less than 1 (b) more than 1	1.2 (c) 0 (d) 1.	
9	Candidates are required to answ <u>any 5 (five)</u> from Group B to E, taking <u>at lea</u>	er Group A and <u>ast one</u> from each group.		(x)	Mushel curves means (a) curves at constant head (b) curves at constant speed		
Candidates are required to give answer in their own words as far as practicable.					(c) curves at constant efficiency (d) curves at variable efficiency		
Group – A (Multiple Choice Type Questions)					Group – B		
1. Choc	ose the correct alternative for the followi	ng: 10 × 1 = 10	2.	(a)	What is the significance of simil turbomachines.	arity and model study for	
 (i) For an axial flow pump (a) head is more and discharge is (b) discharge is more and head is 				(b)	Derive the basic equation of energy transfer for a pump. 6 + 6 = 1		
	(c) discharge is more and head is less (d) both head and discharge are very less		3.	3. (a) Explain different types of draft tubes with diagrams.	ith diagrams.		
(ii)	$\frac{P}{\rho N^3 D^5}$ is known as	55.		(b)	Compare positive displacement machines with dynamic (non-positive machines. What is meant by 'homologous series'? Explain uni quantities for turbomachines.		
	(a) pressure coefficient (c) flow coefficient	(b) head coefficient (d) power coefficient.				5 + (2 + 5) = 12	
(iii)	The expression of unit discharge is				Group – C		
	(a) $\frac{Q}{\sqrt{H}}$ (b) $\frac{Q}{H\sqrt{H}}$	(c) $\frac{Q}{H^{5/4}}$ (d) $\frac{Q}{H}$	4.	(a)	What is NPSH? Write the relation caviataion factor.	between NPSH and Thoma's	
(iv)	The expression of specific speed of a put (a) $\frac{N\sqrt{Q}}{H^{\frac{5}{2}}}$ (b) $\frac{N\sqrt{P}}{H^{\frac{5}{2}}}$	mp is (c) $\frac{N\sqrt{p}}{H^{\frac{5}{4}}}$ (d) $\frac{N\sqrt{Q}}{H^{\frac{3}{4}}}$		(b)	A centrifugal pump is rotating at 1000 rpm delivers 0.160 m ³ /s water against a head of 30 m. The pump is installed at a place when atmospheric pressure 1 × 10 ⁵ Pa (abs) and vapour pressure of water		
(v)	Adjustable runner blades are found in				3 KPa (abs). The nead loss in suction pipe is equivalent to 0.2 m c water Calculate minimum NPSH	pipe is equivalent to 0.2 m of	
	(a) Francis turbine (c) Pelton turbine	(b) Propeller turbine (d) Kaplan turbine.				4 + 8 = 12	
(vi)	Shut off head of axial flow pump is (a) more than duty point head (c) equal to duty point head	(b) less than duty point head (d) equal to zero	5. (a d		The diameter of an impeller of a centrifugal pump at inlet and outlet a 300 mm and 600 mm respectively. The velocity of flow at outlet is 2.5 m and vanes are set back at an angle of 45° at outlet. Determine	igal pump at inlet and outlet are elocity of flow at outlet is 2.5 m/s of 45° at outlet. Determine the	
(vii)	n an axial flow turbomachine, the direction of flow of fluid is along				minimum starting speed of the pump if the manometric efficiency is 75%		
	(a) parallel to the shaft (c) 45° inclined to the shaft	(b) perpendicular to the shaft (d) both (b) and (c).		(b)	Explain with neat sketch the effect of blade	outlet angle of a centrifugal pump. 6 + 6 = 12	
MECH 3143	3 1		MEC	H 3143	3 2		

В.ТЕСН/ME/5^{тн} SEM/MECH 3143/2017

Group – D

- 6. (a) Discuss the functions of different components of a Francis turbine with neat sketch.
 - (b) A Francis turbine develops 5 MW brake power while running at 240 rpm under a head of 220 m. Assuming overall efficiency 80%, calculate the unit speed, unit discharge, and unit power.

6 + 6 = 12

- 7. (a) Explain 'surging' in water conveyance system.
 - (b) Why efficiency of Kaplan turbine is higher than of propeller turbine? Describe the design aspects of a Pelton turbine.

4 + (2 + 6) = 12

Group – E

- 8. (a) Briefly discuss the choking of a centrifugal compressor.
 - (b) Air at 30°C enters into a centrifugal compressor running at 20000 rpm. Assume slip factor 0.8, power input factor 1, isentropic efficiency 80%, and outer blade tip diameter 0.5 m. Assuming same inlet and exit absolute velocities, calculate the static temperature rise and static pressure ratio for the compressor. Given c_p of air = 1005 J/kg-K.

4 + 8 = 12

- 9. (a) Describe the axial flow compressor characteristics.
 - (b) Show the flow through stages in axial flow compressor with neat sketch.

6 + 6 = 12