HEAT TRANSFER (MECH3102)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (fiyelfrom Group B to E, taking at least one from each group.

Candidates are required to give answer in *their own words asfar as practicable.*

Group-A

(Multiple Choice Type Questions)

(i) The ratio of total emissive power of a body to the total emissive power of a black body is called

- (a) absorptivity (b) reflectivity (c) transmissivity (d) emissivity.
- (ii) The ratio of momentum and thermal diffusivity of the fluid is represented by
	-

(a) Reynolds number (b) Nusselt number *(c)* Stanton number (d) Prandtl number.

 $(c) W/m^2$ (d) m^2/s .

(iii) The SI unit of thermal diffusivity is $(a) m^{-2}$ (b) m^{-1}

(iv) In natural convection heat transfer, the Nusselt number is a function of fluid Prandtl number and

- (a) Biot number (b) Reynolds number (c) Grashoffnumber (d) Stanton number.
-
- (v) The thermal resistance for $1-D$ heat conduction through a hollow sphere of inner and outer radii r_1 and r_2 with thermal conductivity *k* is

(a)
$$
\frac{r_2 - r_1}{4\pi k r_1 r_2}
$$

\n(b) $\frac{k(r_2 - r_1)}{4\pi r_1 r_2}$
\n(c) $\frac{4\pi k (r_2 - r_1)}{r_1 r_2}$
\n(d) $\frac{(r_2 - r_1)r_1 r_2}{4\pi k}$

(vi) Which of the following represents dimensionless pressure drop for internal flow?

- (a) Stanton number (b) Fourier number
-
- (c) Friction factor (d) Peclet number.

I~

- (vii) Identify the wrong statement in respect of thermal time constant in Lumped Capacitance Method:
	- (a) its expression is $\frac{\rho V_c}{h_A}$
	- (b) it has the unit of time
	- (c) higher the value faster the response towards sudden change in environment temperature
	- (d) higher the value slower the response towards sudden change in environment temperature.

(viii) The Nusselt number signifies

- (a) dimensionless velocity gradient at the surface
- (b) dimensionless temperature gradient at the surface
- (c) ratio of inertia and viscous force
- (d) fluid property.
- (ix) The laminar boundary layer thickness at any distance *x* from the leading edge of a flat plate varies as (a) Re_{τ}^{-1} (b) $Re_{\tau}^{-0.5}$ (c) $Re_x^{0.5}$ (d) Re_x^2 .
- (x) The value of *Pr* for air is about $(a) 0.1$ (b) 0.4

Group - B

- 2. (a) Define thermal conductivity. What is meant by thermal resistance? Derive an expression of the thermal resistance of a composite wall of three layers with appropriate parameters.
	- (b) Consider one-dimensional steady heat conduction without heat generation through a plane wall with the boundary conditions, as shown in the Fig. The thermal conductivity is $k = k_0 + bT$ where k_0 and *b* are positive constants and *T* is in Kelvin. Determine whether the temperature gradient $\left(\frac{dT}{dx}\right)$ increases, decreases or remains constant with increase in x.

$$
T_1
$$
 T_2 where $T_2 > T_1$

 $(1+1+4)+6=12$

 $(c) 0.71$ (d) 1.1.

3. (a) What is meant by critical thickness of insulation referred to a cylindrical geometry? Derive an expression of the critical insulation radius and explain its significance for a cylindrical geometry.

MECH 3102 2

(b) Thermal energy is generated at a constant rate of $q_0 = 2 \times 10^6$ W/m³ in a copper rod of radius $r = 50$ mm with the two flat faces perfectly insulated. The thermal conductivity $k = 386 W/m-K$. The rod is cooled by convection from its cylindrical surface into an ambient at 25⁰ C with a heat transfer coefficient $h = 1000 W/m^2-K$. What is the surface temperature of the rod . at steady state? What is the maximum temperature of the rod?

 $6 + 6 = 12$

Group-C

4. (a) For the surfaces shown below write the complete shape factor matrix [F_{ij}], given that F_{1-2,3} = 0.31, F₁₋₂ = 0.27.

(b) Given the total emissive power for a black body radiation $E_b = {2\pi hc^2 \over \lambda^5 (e^{hc}/\lambda kT) - 1}$, derive the mathematical expression of Wein's displacement law. Hence write the statement of the law.

 $6 + (4 + 2) = 12$

- 5. (a) A solid copper ball of 100 mm diameter and $\rho = 8954 \text{ kg/m}^3$, $c_p = 383$ J/kg-K, $k = 386$ W/m-K is at a uniform temperature of 250 $^{\circ}$ C. It is suddenly immersed in a well-stirred fluid which is maintained at a uniform temperature of 50° C. The convective heat transfer coefficient h between the ball and the fluid = $200 \,\mathrm{W/m^2\text{-}K}$. Estimate the time after which the ball reaches a temperature of 100°C.
	- (b) A 2 cm thick steel slab heated to 525° C is held in air stream having a mean temperature of 25°C. Estimate the time interval when the slab temperature would not depart from the mean value of 25°C by more than 0.5°c at any point in the slab.

The steel plate has following thermo-physical properties:

 $\rho = 7950 \ kg/m^3$, $c_p = 455 \ J/kgK$, $k = 46 \ W/mK$

The heat transfer coefficient on plate surface $h = 36$ *W*/ $m^2 K$.

 $6 + 6 = 12$

Group-D

- 6. (a) What is the significance of the *critical* Reynolds number? State its approximate values for flow over a flat plate and through a circular tube.
	- (b) Where is the local heat flux higher for laminar external forced convection over a flat plate-at the leading edge or at the trailing edge?
	- (c) Air at 27°C and 1 *atm* flows over a heated flat plate with a velocity of 2 m/s . The plate is at uniform temperature of 60 \degree C. Calculate the heat transfer rate from (i) first 0.2 m of the plate, and (ii) first 0.4 m of the plate. (Assume the properties of air at the mean film temperature as: $\nu = 17.36 \times 10^{-6} \frac{m^2}{s}$, $k_f = 0.02749 \frac{W}{mK}$, $Pr = 0.71$, $c_p = 1.006 \frac{k}{K}$ $(2 + 1 + 1) + 2 + (3 + 3) = 12$
- 7. (a) Air stream at 27°C moves at 0.3 m/s across a 100 W incandescent bulb glowing at 127°C. If the bulb is approximated as a 60 mm diameter sphere, estimate (i) the heat transfer rate, and (ii) the percentage of power lost due to convection. Use the correlation $Nu = 0.37Re_{0.6}^{0.6}Pr^{0.3}$. Assume the properties of air at the mean film temperature as: $v = 2.09 \times 10^{-5}$ m²/s, k_f = 0.03 W/mK, Pr = 0.71.
	- (b) What is the physical significance of the Prandtl number?
	- (c) Explain the Reynolds Colburn analogy for laminar external forced convection over a flat plate.

 $(4+2)+2+4=12$

Group-E

8. (a) The wall of a tube 4 m long and 20 mm diameter is held at constant temperature by providing a steam jacket A viscous fluid enters the tube at 30°C and leaves at 40°C at the rate of 180 kg/hr. Determine (i) the average heat transfer coefficient, and (ii) the wall temperature. Use the

> following correlation: Nu = $3.65 + \frac{0.67_1^4 \text{RePr}}{4 \times 0.67}$. $1+0.04\left(\frac{0.06}{1}\text{RePi}\right)$

Take the following thermophysical properties of the fluid: $p = 850 \frac{\text{kg}}{\text{m}^3}$; k = 0.1396 W/mK; v = 5.1 × 10⁻⁶ m²/s; c_p = 2000 $\frac{J}{\text{kgK}}$

(b) Estimate the heat transfer from a 40 W incandescent bulb at 125°C to 25°C in quiescent air. Approximate the bulb as a 50 mm diameter sphere. At the mean film temperature of 75°C, the thermo-physical properties of air are: $k = 0.03$ W/mK; $v = 20.55 \times 10^{-6}$ m²/s; Pr = 0.693

Using the correlation for convection coefficient Nu = 0.60 (Gr. Pr)^{0.25}, calculate the percentage of power lost by free convection.

 $6+6=12$

9. (a) A steam pipe 50 mm diameter and $2.5 \, m$ long has been placed horizontally and exposed to still air at 25°C. If the pipe wall temperature is 295°C, determine the rate of heat loss. At the mean temperature of 160°C, the thermo-physical properties of air are: $k = 0.0364$ *W* /m*K* : $v = 30.09 \times 10^{-6}$ m² /s : *Pr* = 0.682. For laminar flow over horizontal cylinders within the range $10^3 < Gr. Pr < 10^9$, use the correlation $Nu = 0.53 (Gr. Pr)^{0.25}$.

(b) A heat exchanger is required to cool 55000 *kg/hr* of alcohol from 66°C to 40°C using 40000 kg/hr of water entering at 5°C. Calculate the (i) exit temperature of water (ii) heat transfer rate (iii) surface area required for parallel-flow type and (iv) counter-flow type of heat exchanger.

Take the overall heat transfer coefficient $U = 580$ W/m²k, $C_{Palc} = 3760$ *J*/*Kgk*, $CP_{wat} = 4180 J/Kgk$

 $6 + (1.5 \times 4) = 12$

•....-