B.Tech/AEIE/CE/ECE/EE/3rd Sem/MATH-2001/2015

iii) If $f(x) = x \sin x$, $-\pi \le x \le \pi$ be expanded in Fourier series

as
$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
, then $a_1 =$
(a) 0 (b) 1

(c) 1/2 (d) -1/2

iv) The Fourier sine transform of
$$e^{-|x|}$$
 is

1	$(b) e^{-s}$
(a) $\frac{1+s^2}{1+s^2}$	(b) $\frac{e}{1+s^2}$

(c)
$$\frac{e^{s}}{1+s^{2}}$$
 (d) $\frac{s}{1+s^{2}}$

v) The general solution of the differential equation $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (\lambda^2 x^2 - p^2)y = 0$, where p is not an integer, is

(a)
$$c_1 J_p(x) + c_2 J_{-p}(x)$$
 (b) $c_1 J_p\left(\frac{\chi}{\lambda}\right) + c_2 J_{-p}\left(\frac{\chi}{\lambda}\right)$
(c) $c_1 J_p(\lambda x) + c_2 J_{-p}(\lambda x)$ (d) $c_1 J_p\left(\frac{\lambda}{x}\right) + c_2 J_{-p}\left(\frac{\lambda}{x}\right)$

vi) The partial differential equation of all spheres whose centres lie on the z – axis is

(a)
$$xq + yp = 0$$

(b) $xq - yp = 0$
(c) $xq + \frac{1}{yp} = 0$
(d) $\frac{1}{xq} + \frac{1}{yp} = 0$
[Here, $p = \frac{\partial z}{\partial x}$; $q = \frac{\partial z}{\partial y}$]

2

[Turn over]

B.Tech/AEIE/CE/ECE/EE/3rd Sem/MATH-2001/2015

2015

MATHEMATICAL METHODS (MATH 2001)

Time Alloted : 3 Hours

MATH 2001

Full Marks : 70

Figures out of the right margin indicate full marks. Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group. Candidates are required to give answer in their own words as far as practicable

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following : [10×1=10]

i)	The order of the pole of	the function $\frac{\sin z}{z^3}$ is
	(a) 1 (c) 3	(b) 2 (d) 4
	(c) 3	(d) 4
ii)	The value of the integra	$\int_{c} \frac{dz}{z^2 - 2z}$, (where the circle
	C: z-2 = 1 is traversed	in the counter clockwise sense),
	is	
	(a) —πi	(b) 2πi
	(с) <i>т</i> і	(d) none of these
тн 2	001 1	[Turn over]

B.Tech/AEIE/CE/ECE/EE/3rd Sem/MATH-2001/2015

- vii) Partial differential equation of the surface z =ax 2 by 2 is given by
 - (a) 2z = px qy (b) 2z = px + qy(c) z = px + qy (d) $z = ap^2 - bq^2$

viii) x² in terms of Legendre's polynomials is

(a)
$$\frac{P_2(x) - P_0(x)}{3}$$
 (b) $\frac{P_2(x) + P_0(x)}{3}$
(c) $\frac{2P_2(x) - P_0(x)}{3}$ (d) $\frac{2P_2(x) + P_0(x)}{3}$

ix) The period of the function $f(x) = |\sin x|$ is

(a) 2π	(b)	$\frac{\pi}{2}$	
(c) 3π	(d)	π	

x) If a function f is analytic throughout a simply connected domain D, then for every closed contour C lying in D

(a)
$$\int_{C} f(z)dz = 2\pi i$$

(b) $\int_{C} f(z)dz = \pi i$
(c) $\int_{C} f(z)dz = \frac{\pi}{2}i$
(d) $\int_{C} f(z)dz = 0$
GROUP - B

2. (a) Prove that the function f(z) defined by f(z) =

 $\frac{x^3(1+i)-y^3(1-i)}{x^2+y^2},\,z\neq 0$ and f(0) = 0 is continuous and

CR equations are satisfied at the origin, yet f '(0) does not exist.

MATH 2001

3

B.Tech/AEIE/CE/ECE/EE/3rd Sem/MATH-2001/2015

(b) Evaluate
$$\oint_{c} \frac{e^{z}dz}{z(1-z)^{3}}$$
 where C is $|z - 1| = \frac{1}{2}$.

8+4=12

3. (a) Let C denote the boundary of the square whose sides lie along the lines $x = \pm 2$ and $y = \pm 2$, where C is described in the positive sense.

Use the Residue theorem to evaluate the integral

$$\int_{C} \frac{\cos z}{z(z^2 + 3/2)} dz$$

(b) Consider f to be an analytic function and its real part to be

$$u(x,y) = \frac{y}{x^2 + y^2}$$

(i) Find the conjugate harmonic of u.

(ii) Express f(z) in terms of z.

6+6=12

GROUP - C

4. (a) Expand $f(x) = x^2$ in Fourier series in the interval $-\pi < x < \pi$ and deduce that

$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots$$

(b) Expand the following function in a Fourier stries in $[-\pi, \pi]$

$$f(x) = \begin{cases} -\frac{1}{2}(\pi + x), \text{ when } -\pi \le x < 0\\ \frac{1}{2}(\pi - x), \text{ when } 0 \le x \le \pi \end{cases}$$

5+7=12

MATH 2001

4

[Turn over]

B.Tech/AEIE/CE/ECE/EE/3rd Sem/MATH-2001/2015

- 5. (a) Find the Fourier transform of e^{-ax^2} , where a > 0
 - (b) Show that if $\hat{f}(w)$ is the Fourier transform of f(x), then $\hat{f}(w-a)$ is the Fourier transform of $e^{iax} f(x)$
 - (c) Show f * g = g * f where '*' indicates convolution.

6+4+2 = 12

Group - D

6. (a) Find a power series solution in power of *x* of the following differential equation :

 $(1-x^2)y''-2xy'+2y=0$

(b) Using Rodrigue's formula prove the recurrence relation $nP_n = xP'_n - P'_{n-1}$ [where $P_n(x)$ denotes the Legendre's polynomial]

7+5 = 12

7. (a) Establish $\frac{d}{dx} \{J_n(x)\} = \frac{n}{x} J_n(x) - J_{n-1}(x)$ and hence show

that $x^n J_n(x)$ is a solution of

$$x\frac{d^2y}{dx^2} + (1-2x)\frac{dy}{dx} + xy = 0$$

(b) Solve, by the finite difference method, the boundary value problem $x^2y''(x) - 2y(x) + x = 0$, 2 < x < 3, where y(2) = 0, y(3) = 0, taking $h = \frac{1}{4}$.

5+7 = 12

B.Tech/AEIE/CE/ECE/EE/3rd Sem/MATH-2001/2015

GROUP - E

- 8. (a) Verify that $u(x,y) = a \ln(x^2 + y^2) + b$ satisfies Laplace's equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ and determine *a* and *b* so that *u* satisfies the boundary conditions u = 0 on the circle $x^2 + y^2 = 1$ and u = 3 on the circle $x^2 + y^2 = 4$.
 - (b) Solve by the method of separation of variables : $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$, x > 0, t > 0, where $u(x, 0) = 6e^{-3x}$

$$6+6 = 12$$

9. (a) Apply Charpit's method to find the complete integral of $2(u + xp + yq) = yp^2$

where
$$p = \frac{\partial u}{\partial x}, q = \frac{\partial u}{\partial y}$$

V

(b) Solve the wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$, 0 < x < l, t > 0

given that u(0,t) = u(l,t) = 0, u(x,0) = f(x) and $\frac{\partial u}{\partial t}(x,0) = 0$ where f(x) is a known function.

6+6 = 12

MATH 2001

5

MATH 2001

6