E/EEE/ICE/Od

wer any three

point charge

(2, 0, 5) n

eability 2.5.

cular disc of a origin. Char (0, 0, h).

ane polarized

ically the var

op the analo nission line. sless transmi IHz. The lin

e characteri

ty.

B

B.TECH/EE/3rd SEM /ELEC 2103/2015 2015

Field Theory (ELEC 2103)

Full Marks : 70

TEC

as far

(the n

/2015-1

SPIC Allotted : 3 hrs

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking <u>at least one</u> from each group.

tates are required to give answer in their own words as far as practicable.

12 Wates are required	Group - A	
(Multiple	le Choice Type Questions) or the following: 10 x 1=10	
thich one of the following ve	ctor field is conservative: (b) $F_2=-xa_y+ya_x$	
(a) $F_1=xa_x+ya_y$ (c) $F_3=ya_x$	(d) none of these.	
unotential field is given by v	/=xy+z. Then electric field will be	
(a) $E=ya_x + xa_y + a_z$ (c) $E=ya_x + xa_y + xya_z$	(b) $E=ya_x + xa_y$ (d) $E=0$.	
m anotic flux density a	nd the magnetic vector potential are related by:	
The magnetic flux density a	(b) B=∇×A	
(a) $A = V \wedge D$ (c) $B = \nabla A$	(d) A=∇.B.	
Two parallel wire carrying	g current in the same direction. The direction of force	2
(a) parallel to the wire (c) perpendicular to the	(b) perpendicular to the line & attract line & repulsive (d) none of these.	
Which one of the following	is correct	
(a) ∇ ² A=-μ₀J	(b) $\nabla^2 B^{=-\mu_0}$ (d) $\nabla \times B^{=0}$.	
(c) ∇.E=0		
The direction of propagat	ion of EM wave is obtained from	
(a) E×H	(b) H×E	
(c) H	(d) none of these.	
Dr	corictic impedance is given by	
For lossless line charact	Γ	
(a) $\sqrt{\frac{C}{T}}$	(\mathbf{b}) \sqrt{c}	
	(d) $2\pi\sqrt{\frac{L}{2}}$	
(c) $2\pi\sqrt{\frac{C}{L}}$	(c) - VC.	
1.		
1(10)		

B.Tech/ECE/EE/3rd Sem/ELEC-2102/2015

9. (a) Explain '.OP', '.TF', '.AC' and '.PLOT' statements in SPICE

(b) A series R-L-C circuit with L=1H and C=1F is excited with a 10V, DC source. Write a SPICE program to plot the voltage across inductor (V_L) and voltage across capacitor (V_c) up to 10 seconds for R = $1\Omega, 2\Omega$ and 10Ω respectively. 6+6 = 10

1331-100mo

Draw and explain the gain vs. requeroy characteristic of band pass, and band releast filters. $\frac{V_{0}(s)}{V_{0}(s)}$ for the circuits shown in (Fig.8b). Determine and $\frac{V_{0}(s)}{V_{0}(s)}$ for the circuits shown in (Fig.8b). Determine cut off frequency and type of the filler

8

ng co-axial respectively. that $\nabla \times \vec{H} =$ _orentz forc

Biot-Savart

ht conducto

nd explain luish betwee

the wave en polarization

ELEC 2102

	D.TECH/EE/3" SEM /ELEC 2400/00		
	(viii) The velocity of electromeaning	rd SEM /ELEC 2103/2015	1/2015-
	(a) $\mu_0 \varepsilon_0$ (b) $\frac{1}{\mu_0 \varepsilon_0}$	ace is the flux density and field intensity at point p due to a straight conductor	
nswer any three	(c) $\frac{1}{\sqrt{\mu_0 \varepsilon_0}}$ (d) $\sqrt{\frac{\mu_0}{\varepsilon_0}}$	y P	
vo point charge (2, 0, 5) m meability 2.5	(ix) The skin depth is given by (a) $\delta = \sqrt{2/(\omega\mu\sigma)}$ (b) $\delta = \sqrt{\pi/(\omega\mu\sigma)}$	$0 \xrightarrow{\alpha_1 \qquad h \qquad \alpha_2} \qquad X$	F TEC
ircular disc of he origin. Char	(d) $\delta = \pi / \sqrt{(\omega \mu \sigma)}$ (x) Displacement current flows through (a) inductor	L en magnetic vector potential 'A' in cylindrical coordinates A=5rSin φ a _z , find the density at (2, π , 0).	
lano nel :	(c) resistor (b) capacitor (d) none of these.	$_{pe}$ and explain Ampere's law in differential form of magnetostatic. 5 + 4 + 3 = 12	
lalle polarized	Group - B		
hically the var	2.(a) Given vector B=r ² a _r + Sinθa _ø are in spherical coordinate system. Excluding the system of the system.	Group – D	
lop the analo nission line.	 (b) Two points in cylindrical coordinate systems are P(10,60°,2) & Q(5, the distance between the two points. (c) Explain the system of the syste	¹	'. as far a
sless transmi IHz. The lin	(c) Explain the physical significance of Divergence, Curl & Gradient.	α of observe of α plain the Transformer and Motional EMF. 8+4=12	these I
e characteri. y.	(0,0) to $(1,1)$	6 + 4 + 2 we y=x ² from stablish Poynting Theorem.	
Biot-Savart	(b) Find the gradient of the following scalar field, given below: $H=r^{2*}Cos\theta^*Cos\omega$	free space E(z,t) (V/m) is given below. Find the average power crossing a circular a of radius 2.5 m in the plane z=constant. $E(z,t) = 50 \cos(\omega t - \beta z) a_x$	
hat $\nabla \times \vec{H}$ =	(c) Which one of the following vector fields $F_1 \& F_2$ can be written as grad $F_1 = xa_z$; $F_2 = xa_x + ya_y$	Determine the propagation constant γ for a material having $\mu_r = 1$, $\varepsilon_r = 6$, and lient of a scale = 0.15 pS/m, if the wave frequency is 16 MHz. 5 + 4 + 3 = 12	
prentz fore		4+4+4	
t conducte	Group - C 4.(a) Find the potential V due to the line	Group – E	
explain sh betwe	 (b) Given the potential function V=7x+4y+5z in the free space, find the sto 1-m³ volume centered at the origin. 	in the for Find the characteristic impedance, propagation constant and velocity of propagation for transmission line having the following parameters: $R=40\Omega/Km$ G=10 ⁻⁶ mho/m L=0.02 H/km C=0.07 µF/km f=1000 Hz.	(the not
olarizati	(c) State and explain Gauss's law in differential form.	^{1]} Find the expression of input impedance of transmission line. What do you mean by ^{dist} ortion less line in transmission line?	
E	LEC 2103 2 5	5 + (4 + 3) = 12	
		103 3	

100000

3203

1

CS/B.Tech/EE/EEE/ICE/Oc

Answer any three

- 7. (a) Two point charge and (2, 0, 5) m permeability 2.5. (b) A circular disc of at the origin. Char point (0, 0, h).
- 8. (a) A plane polarized

graphically the var

wave.

- (b) Develop the analog transmission line.
- (c) A lossless transmi 600 MHz. The line (i) the characteris velocity.
- (a) Using Biot-Savart of a long co-axial (b>a) respectively.
- (b) Prove that $\nabla \times \vec{H} =$
- (c) Write Lorentz forc a straight conducto
- (a) State and explain N (b) Distinguish betwee
- (a) Derive the wave equip (b) What is polarizatio

ELEC 2103

B.TECH/EE/3rd SEM /ELEC 2103/2015

9.(a) Derive the general wave equation of transmission line.

- (b) A lossless transmission line with $Z_0=50\Omega$ is 100m long and operate at M_{H_2} is terminated with a load $Z_L=60+j30 \Omega$. If $u=1\times10^8 m/s$ find
 - the reflection coefficient
 - the standing wave ratio ii.
 - iii the input impedance

CS/B.Tech/EE/ECE/EIE/EEE/ICE/BME/PWE/Odd/Sem-3rd/M(CS)

MAULANA ABUL KALAM AZAD UNIVERSIT WEST BENGAL

M(CS)-301

NUMERICAL METHODS

Time Allotted: 3 Hours

1.

The questions are of equal value. The figures in the margin indicate full m Candidates are required to give their answers in their own w All symbols are of usual significance

GROUP A (Multiple Choice Type Questions

Answer any ten questions.

- (i) Lagrange's interpolation can be used for
 - (A) only equi-spaced nodes
 - (B) only unequi-spaced nodes
 - (C) for both cases of (a) and (b)
 - (D) none of these
- (ii) The inherent error for Trapezoidal rule of integration is have their usual meanings)

$$-\frac{nh^5}{140}f''(x_0)$$
 (B) $-\frac{nh^5}{140}f^{iv}(x_0)$

(C) $-\frac{nh^3}{12}f''(x_0)$

(A)

(D) none of these