B.Tech/ECE/3rd Sem/ECEN-2103/2015

2015

SIGNALS AND SYSTEMS (ECEN 2103)

Time Alloted : 3 Hours

Full Marks : 70

Figures out of the right margin indicate full marks. Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group. Candidates are required to give answer in their own words as far as practicable

<u>GROUP - A</u> (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for the following : [10×1=10]
 - i) Energy of a power signal is
 - (a) finite (b) zero
 - (c) infinite (d) between 1 and 2
 - ii) The minimum sampling frequency associated with a signal of bandwidth B Hz is

(a) 2B	(b) 4B
(c) B	(d) 3B

- iii) An LTI system represented by the difference equation y(n) = x(n) x(n 1) is
 - (a) low-pass filter (b) high-pass filter

1

(c) band-pass filter (d) all-pass filter

ECEN 2103

[Turn over]

B.Tech/ECE/3rd Sem/ECEN-2103/2015

1 5 5 5 1

	IV) The z-transform of $\delta(n - m)$ is				
		(a) z ^{-m} (!	b) z ^{_m_n}		
		(c) z ^{n-m} (e	d) z ^{m-n}		
	v)	A system described by y[n] = nx[n] is			
		(a) linear, time varying & stable			
		(b) non-linear, time invariant & unstable			
		(c) non-linear, time varying & stable			
		(d) linear, time varying & unstable			
	vi)	The signal α^n u[n] is an energy signal if			
		(a) α < 1 (b) α > 1		
		(c) $ \alpha = 1$ (d) $\mid \alpha \mid = 0$		
	vii)	The impulse response of a	system described by the		
	differential equation $\frac{d^2y(t)}{dt^2} + y(t) = x(t)$ is				
		(a) a constant			
(b) an impulse function(c) a sinusoid					
			e 1.		
		(d) an exponentially decaying function			
	viii) Classify the following two systems as per causality		tems as per causality		
	1. Weather forecasting system				
	2. Aircraft collision detection systems		n systems		
		(a) Causal, causal (b) Non causal, causal		
		(c) Causal, non causal (d) Non causal, non causal		
	ix)	ix) A discrete time filter system function is given $\frac{1}{2}$			
		H(z) = $\frac{1 - 1.6z^{-1} + z^{-2}}{1 - 1.5z^{-1} + 0.8z^{-2}}$. What is the amplitude response at dc?			
		(a) 0 (b) 1		
		(c) 1.33 (d) 1.6		

2

ECEN 2103

[Turn over]

B.Tech/ECE/3rd Sem/ECEN-2103/2015

- x) The unit step response of an LTI system with impulse response $h[n] = \delta[n] \delta[n 1]$ is
 - (a) $\delta[n-1]$ (b) u[n-1]
 - (d) u[n]

GROUP - B

2. (a) Determine the linearity of (dy/dt) + 4ty(t) = 2x(t).

Perform the transformation x(-t+1) of the above function.

- (c) Evaluate whether the following signals are energy or power signals
 - (i) $x(t) = \exp[j(2t + \Pi/4)]$
 - (ii) $x(t) = \cos t$

(c) δ[n]

3+3+6 = 12

- 3. (a) (i) What do you mean by odd and even signal?
 - (ii) Consider the signal shown below. Draw the even and odd parts of the signal.

3

[Turn over]

B.Tech/ECE/3rd Sem/ECEN-2103/2015

 (b) Determine the impulse response of the following recursive LTI system

y[n] - 3y[n - 1] - 4y[n - 2] = x[n] + 2x[n - 1](2+3)+7 = 12

GROUP - C

- 4. (a) State whether the following signal is periodic $x(t) = 4\cos(5\Pi t)$
 - (b) Find out the Fourier transform of unit step function.
 - (c) Given $x(t) = 2 + 4\cos(2\omega_0 t)$. Find the exponential Fourier series co-efficients of x(t). **2+7+3 = 12**
- 5. (a) Let $x[n] = \delta[n] + 2\delta[n 1] \delta[n 3]$ and $h[n] = 2\delta[n + 1] + 2\delta[n - 1]$ Compute y[n] = x[n + 2] * h[n] using graphical method.
 - (b) Find the auto-correlation of the signal $x(t) = A \sin(\omega_0 t + \phi)$. 6+6 = 12

Group - D

6. (a) Use Laplace Transform to determine the voltage y(t) in the circuit shown below for an applied voltage x(t) = 3e^{-10t}u(t)V. The voltage across the capacitor at time t = 0⁻ is 5V.

ECEN 2103

4

[Turn over]

B.Tech/ECE/3rd Sem/ECEN-2103/2015

(b) Determine the Fourier coefficients for the periodic sequence x[n] shown below

7+5 = 12

7. (a) Determine the z-transform and the Region of Convergence for the following signal

$$x[n] = -\left(\frac{1}{2}\right)^{n}u[-n-1] - \left(-\frac{1}{3}\right)^{n}u[-n-1]$$

(b) Compute the magnitude and phase response of a filter with system function $H(z) = 1 + z^{-1} + z^{-2} + z^{-3} + z^{-4} + z^{-5} + z^{-6} + z^{-7} + z^{-8}$, if the sampling frequency $f_s = 1$ kHz. Determine the frequencies of the analog sinusoid that cannot pass through the filter.

4+8 = 12

GROUP - E

- 8. (a) Explain flat-top sampling.
 - (b) What are the properties of a probability density function?
 - (c) A random variable has a probability distribution function given by

$$F(x) = 0 \qquad -\infty < x \le 0$$

$$= 1 - e^{-2x}$$
 $0 \le x < \infty$

Find (i) the probability that x > 0.6

(ii) the probability that $0.4 < x \le 0.8$

5

4+4+4 = 12

[Turn over]

A state of the later

ECEN 2103

- B.Tech/ECE/3rd Sem/ECEN-2103/2015
- 9. Write short notes on any four of the following :
 - (i) Significance of the Region of Convergence
 - (ii) Aliasing
 - (iii) Discrete Time Fourier Series
 - (iv) Noise in communication systems
 - (v) Digital Low Pass Filter and High Pass Filter
 - (vi) Stability of a system

 $4 \times 3 = 12$

6