B.TECH/ECE/5TH SEM/ECEN 3102/2016

- (vii) For a gain constant K, the phase-lead compensator
 - (a) reduces the slope of the magnitude curve in the entire range of frequency domain
 - (b) decreases the gain cross-over frequency
 - (c) reduces the phase margin
 - (d) reduces the resonance peak Mp.
- (viii) In closed loop control system, with positive value of feedback gain the overall gain of the system will(a) decrease(b) increase
 - (a) decrease (c) be unaffected

- (d) be any of the above.
- (ix) In case of type-1 system steady state acceleration error is (a) unity (b) infinity (c) zero (d) 10.
- (x) The system $\dot{x} = Ax + Bu$ with $A = \begin{bmatrix} -1 & 2 \\ 0 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is
 - (a) observable and controllable
 - (b) observable but uncontrollable
 - (c) unobservable but controllable
 - (d) unobservable and uncontrollable.

Group – B

2. (a) Find out the overall transfer function using Mason's Gain formula.

- (b) Show force voltage analogy by comparing an electrical RLC circuit and a mechanical translational system.
- (c) List the advantages of negative feedback in a system.

6 + 4 + 2 = 12

3. (a) Find out the overall transfer function using block diagram reduction:

ECEN 3102

B.TECH/ECE/5TH SEM/ECEN 3102/2016

(b) Draw the Signal Flow Graph of the following block diagram an the overall transfer function using Mason's Gain Formula.

Group - C

4. (a) Using the Routh Hurwitz stability criterion, determine the max feedback gain K for which the closed loop system will be stable OLTF is

$$G(s)H(s) = \frac{5(1-0.2s)}{s^2+3.2s+4}$$

Also find the frequency of oscillation.

- (b) A unity feedback system OLTF is given by $G(s) = \frac{10}{s^2 + 11s + 10}$ out the position, velocity and acceleration error for this system.
- (c) Comment how the location of the poles of a second order s varies with variation of damping ratio.

8+2+2

- 5. (a) Derive the expressions for Rise time for the unit step respons second order system.
 - (b) For a unity negative feedback system having transfer fur $\frac{K(s+5)}{s(s+6)(s+7)(s+8)}$ evaluate the value of gain K, such the

system has 10% steady-state error for a unit ramp input.

(c) Using Routh-Hurwitz criterion, find the range of K for stabilinity negative feedback having open loop transfer function $G(s) = \frac{K}{s(s+1)(s+2)}$. 3+5+4

Group – D

Draw the Bode plot of the system having open loop transfer function $G(s) = \frac{200(s+10)}{s(s+5)(s+20)}$

ECEN 3102

6.

B.TECH/ECE/5TH SEM/ECEN 3102/2016

- 7. (a) The open loop transfer function of a unity feedback system is given by $G(s) = \frac{5}{s(s+1)(s+2)}$. Draw the Nyquist plot and hence comment on its stability.
 - (b) Define relative stability.

10 + 2 = 12

8 + 4 = 12

Group – E

8. (a) Obtain the characteristic equation and the poles for the control system having state space model as

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -4 & -1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 3 \\ 2 \end{bmatrix} [u(t)]; Y = \begin{bmatrix} 1 & 0 \end{bmatrix} X$$

Also check for controllability.

- (b) Obtain the state transition matrix $\phi(t)$ from non-homogeneous state equation of a linear time invariant control system.
- 9. Write short notes on any three: (4 × 3) = 12
 (i) PID Controller
 (ii) Compensation techniques
 (iii)Polar plot
 (iv) Time domain specifications
 (v) Eigen value.

B.TECH/ECE/5TH SEM/ECEN 3102/2016

CONTROL SYSTEMS (ECEN 3102)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choose	the correct alterna	10	× 1 = 10	
	(i)	The Routh-Hurwitz criterion gives (a) relative stability (c) gain margin		(b) absolute stability (d) phase margin.	
	(ii)	For the system $G(s) = \frac{16}{s^2 + 8s + 16}$, the nature of the time response			
	(a) overdamped (c) critically damped		ed	(b) underdamped (d) undamped.	
	(iii)	The position error for a unity feedback system having open loop transfer function as $G(s) = \frac{10}{s(s+10)}$ is			
		(a) 10	(b) infinity	(c) 1	(d) 0.
	(iv)	The response of an (a) constant (c) decaying export	ler system is (b) ramp (d) oscillatory.		
	(v)	Type of a transfer (a) poles at origin (c) poles at infinity	function denotes the n	ımber of (b) zeros at origin (d) finite poles.	
	(vi)	An open loop s $G(s) = \frac{(s-1)}{(s+2)(s+3)}$ is	ystem represented	by the transfer	function,
	(a) Stable and of the minimum phase type (b) Stable and of the non-minimum phase type				
	(c) Unstable and of the minimum phase type			type	
ECE	N 3102	(d) Unstable and of non–minimum phase type. 1			