B.TECH/ECE/3RD SEM/ECEN 2103/2016

- (viii) "The Fourier transform of a function exists" implies that (a) $\int_{-T}^{T} f(t) dt$ exists (b) $\int_{-T/2}^{T/2} |f(t)| dt$ exists (c) $\int_{-\infty}^{\infty} f(t) dt$ exists (d) $\int_{-\infty}^{\infty} |F(\omega)| d\omega$ exists (iv) The impulse response of a system is h(t). When the input is $\delta(t)$
- (ix) The impulse response of a system is h(t). When the input is $\delta(t)$ the output y(t) will be (a) y(t) (b) $\delta(t)$ (c) h(t) (d) none of the above.

(x) The transfer function of a system is
$$H(s) = \frac{1}{s^2(s+2)^2}$$
. The impulse

response of the system is (-2) + (-

(a)
$$t^{2}u(t) * e^{-2t}u(t)$$

(b) $tu(t) * te^{-2t}u(t)$
(c) $(te^{-2t})^{2}u(t)$
(d) $te^{-2t}u(t) * te^{-2t}u(t)$.

 $a \rightarrow (a) = -2t (a)$

Group - B

2. (a) The trapezoidal pulse x(t) is applied to a differentiator defined by $y(t) = \frac{dx(t)}{dt}$ as shown below

- i) Sketch the output *y*(*t*) of the differentiator and state whether it is an energy or a power signal.
- ii) Determine the total energy or power of the signal.
- (b) Use graphical method to solve the convolution of $x_1(n) = \{1, -1, 2, 3\}$ and $x_2(n) = \{1, -2, 3, -1\}$.

(3+2)+7=12

- 3. (a) Sketch the signal r(-2t+3).
 - (b) Check for the periodicity of the signal $x(t) = 4\cos(5\pi t)$.

B.TECH/ECE/3RD SEM/ECEN 2103/2016

(c) Check whether the following system having an impulse res $h(t) = e^{-2t}u(t-1)$ is stable or not.

4 + 4 + 4

Group - C

- 4. (a) State sampling theorem. Explain what happens if sampling the is violated. Explain reconstruction filter.
 - (b) A continuous time signal x(t) is obtained at the output of an LPF with a cut-off frequency $w_c = 1000\pi$. If instantaneous san is performed on x(t), what is the sampling interval that wil recover x(t) from its sampled version?

(2+2+3)+

- 5. (a) Distinguish between analog and digital filter.
 - (b) Given a filter with finite impulse response h(n) = {1, 4, 2, 3, 1, 2,
 Find the transfer function H(z) for the filter.
 - (c) What is meant by Nyquist rate? Determine the Nyquist rate f signals (i) $x(t) = 2 \operatorname{sinc} (100 \pi t)$ (ii) $x(t) = 1 + \cos 2000 \pi t + \sin 4000 \pi t$. 4 + 3 + 5

Group – D

6. (a) Find the trigonometric Fourier series coefficients for a traimpulses $\delta_T(t)$ shown in figure below.

- (b) Find the Fourier transform of signum function.
- (c) State and prove Duality property of Fourier Transform. Henc the Fourier transform of $\frac{j}{\pi t}$.

3 + 4 + 5

ECEN 2103

ECEN 2103

3

B.TECH/ECE/3RD SEM/ECEN 2103/2016

- Find the convolution of the following signals using graphical method 7. (a) $x(t) = e^{-3t}u(t)$, h(t) = u(t+3).
 - Determine X(s), H(s) and hence verify the output of convolution (b) obtained using time convolution theorem.

6 + 6 = 12

Group - E

8. (a) Consider a first-order stable system with system function $H(z) = K \frac{1 + az^{-1}}{1 + bz^{-1}}$. Find out for what values of K, a, b, does this

system act as an all-pass filter, that is, $|H(e^{j\omega})| = 1$.

- (b) A low pass filter is described by the equation v[n] = 0.9v(n-1) + 0.1x(n)
 - i) By performing a frequency translation of $\Pi/2$, transform the filter into a bandpass filter.
 - ii) What is the impulse response of the bandpass filter?

6 + (3 + 3) = 12

- $4 \times 3 = 12$ Write short notes on any **four** of the following:
 - i) Correlation.
 - ii) Region of Convergence.
 - iii) BIBO Stability.
 - iv) Dirichlet's Condition.
 - v) Static and Dynamic System
 - vi) Compare Fourier and Laplace Transform.

B.TECH/ECE/3RD SEM/ECEN 2103/2016

SIGNALS AND SYSTEMS (ECEN 2103)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A (Multiple Choice Type Questions)

1.	Choose the correct alternative for the following:				10 × 1 = 10	
	(i)	The Fourier transform of a conjugate sym (a) imaginary (c) conjugate symmetric			metric function is (b) real (d) conjugate asymmetric.	
	(ii)	The signal $\alpha^n u[n]$ is (a) $ \alpha < 1$	s an energy sign (b) $ \alpha $ >1	al if (c)	$ \alpha $ =1	(d) $ \alpha = 0.$
	(iii)) A system is stable if ROC (a) includes the unit circle (c) lies on circle			(b) excludes the unit circle (d) entire plane.	
	(iv)	The Laplace Trans (a) 1	form of a unit st (b) 1/s	ep is	(c) s	(d)1/s².
	(v)	The type of systems which are capable particular set of values are called (a) analog (c) digital			of taking any value in a(b) discrete(d) continuous.	
	(vi)	A system whose output depend on future inputs is a(a) static system(b) dynamic s(c) non-causal system(d) both (b) a				ystem nd (c).
	(vii)	The harmonics of the Fourier series of an even signal consists of(a) sine terms only(b) cosine terms only(c) both sine and cosine terms(d) neither sine and cosine terms.				
ECE	N 2103		1			

9.