2016

CHEMISTRY I

(CHEM 1001)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

GROUP - A(Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

 $[10 \times 1 = 10]$

- i) If the temperature of both the heat source and sink are increased by the same amount, then the efficiency of the carnot engine would
 - a) increase
- b) decrease
- c) remain the same
- d) may increase or decrease depending on the nature of the working substance
- ii) The major product obtained when 2-bromobutane is treated with ethanolic KOH is
 - a) trans-2-butene
- b) cis-2-butene

c) 1-butene

- d) 2-butanol
- iii) Which of the following is not a buffer solution?
 - a) NH₄Cl + NH₄OH
- b) CH₃COONa + CH₃CHOOH

c) NaOH + HCL

d) HCOONa + HCOOH

iv)	Consider a P-V diagram for the isothermal and adiabatic expans of an ideal gas. The slope for						
	a) isothermal is P-V and adiabatic is $+\gamma P/V$						
	b) isothermal is $+(P/V)^{\gamma}$ and adiabatic is $-\gamma P/V$						
	c) isothermal is - P/V and adiabatic is - γ P/V d) isothermal is + P/V and adiabatic is $(P/V)^{\gamma}$						
v)	In a solution of AgNO ₃ , speed ratio of Ag $^+$ and NO ₃ $^-$ is 0.84; the transport number of NO ₃ $^-$ will be						
	a) 0.16	b) 0.46	c) 0.8	34	d) 0.54		
vi)) The half-life period for a reaction is independent of initial concentration, choose the correct order of the reaction from the following:						
	a) zero order	b) first order	c) sed	cond orde	er d) al	II of the above	
vii)	An example of step-growth polymer is						
	a) PVC	b) Teflon	c) Bal	kelite	d) Poly-	-butadiene	
viii)	Which ion has the greatest ionic mobility?						
	a) Na ⁺	b) H ₃ O ⁺	(c) Li ⁺		d)K ⁺	
ix)	The boiling point of p-nitro phenol is greater than that of o-nitro phenol because of						
	a) ionic bondi		b) intermolecular H-bonding				
	c) Vander wa	orce	rce d) intramolecular H-bonding				
x)	An essential condition for a molecule to be IR active is						
	a) molecule should be polar						
	b) molecule has an oscillating dipole moment						
	c) molecule h	c) molecule has a permanent dipole					

d) none of these

GROUP - B

- 2 a) What do you mean by a reversible & irreversible process? Prove that for a reversible adiabatic process $TV^{\gamma-1}$ = constant.
 - b) Calculate the enthalpy of formation of methane from the following data:

i) C (s) + O₂ (g)
$$\longrightarrow$$
 CO₂ (g); Δ H = -393.5 kJ

ii)
$$H_2(g) + 1/2 O_2(g) \longrightarrow H_2O(I)$$
; $\Delta H = -286 \text{ kJ}$

iii)
$$CH_4(g) + 2 O_2(g) \longrightarrow CO_2(g) + 2H_2O(I);$$
 $\Delta H = -890.3 \text{ kJ}$

- c) Define work function and free energy.
- d) On passing monochromatic light through a 0.01(M) solution in a cell of 1cm thickness, the intensity of the transmitted light was reduced to 10%. Calculate the molar extinction coefficient.

$$(2+2)+3+2+3=12$$

- 3 a) Gibbs free energy is defined as G= H-TS. Define each term of this equation and obtain the Gibb's Helmoltz equation in terms of Δ G and its temperature coefficient.
 - b) Calculate \triangle G, \triangle H and \triangle S for expansion of 1 mol of an ideal gas at 27°C from 10 to 100 dm³.
 - c) What are the different electronic transitions? Explain with diagram.

3+4+2+3=12

GROUP - C

- 4 a) What do you understand by imperfections in ionic crystals? Name the type of imperfections which generally occur in ionic crystals.
 - b) Discuss the role of solvents in _{SN}1 reaction.

- c) What are the roles of silicon and germanium in the field of semiconductor?
- d) Comment on the stability of N₂, N₂⁺ and N₂⁻ on the basis of MO theory.
- e) What will be the pH of a buffer solution produced by mixing equal volumes of 0.01(M) NH₄Cl solution and 0.1(M) NH₄OH solution (pK_b=5) ?

- 5 a) Arrange the hydrides of group-16 (O, S, Se,Te) in decreasing order of their boiling point and give explanation for your answer.
 - b) What do you mean by metal excess defect? Explain with diagram.
 - c) Do you expect the pH of pure water at 100°C to be less than 7 or more than 7 ? Explain your answer.
 - d) Predict the product(s) obtained when ethyl acetate is heated at 500°C in a sealed tube. Name the reaction mechanism involved.
 - e) Show the reaction involved with mechanism when isobutyl chloride is treated with aqueous NaOH solution.

$$(1+2)+3+2+(1+1)+2=12$$

GROUP - D

- 6 a) Deduce the expression for the rate constant of a second order reaction where the initial concentration of the reactants are same and show that time for half decomposition is inversely proportional to the initial concentration.
 - b) The equivalent conductance at infinite dilution (Λ_0) of HCI, CH₃COONa and NaCl are 426.16, 91.0 and 126.45 ohm⁻¹cm² eq⁻¹ at 25°C. Calculate Λ_0 of CH₃COOH.
 - c) What are the differences between electrolytic cell and galvanic cell?

3+4+2+3=12

- a) Discuss any one of the following in connection with a chemical reaction: (i) effective collision, (ii) proper orientation of the colliding species, (iii) activation energy.
 - b) Calculate the activation energy of a reaction whose rate constant is doubled when the temperature is increased from 300K to 310K.
 - c) Define specific conductance and equivalent conductance. How are they related?
 - d) Draw the conductometric titration curve for strong acid (eg HCI) vs strong base (eg NaOH) and explain the salient features of the curve.
 - e) What are reference electrodes?

2+2+3+3+2=12

GROUP-E

- 8 a) Calculate the mass of theoretical air needed for complete combustion of 10kg of coal sample containing 75% carbon, 15% hydrogen and rest oxygen. Consider air contains 23% oxygen by weight.
 - b) Write down the differences between thermoplastics and thermosetting polymers.
 - c) Explain glass-transition temperature (T_g) of a polymer.
 - d) Write the structural unit and two important applications of each of the following:
 - (i) Teflon ii) Bakelite

4+2+2+4=12

- a) Define number average molecular weight with mathematical expression.
 - b) Classify polymers based on tacticity taking a suitable example.
 - c) What is vulcanization?
 - d) Deduce a relation between GCV and NCV of a coal sample. Distinguish between HTC and LTC.
 - e) What do you mean by knocking? How would you remove Pb impurity from internal combustion engine using fuel containing TEL?