B.TECH / IT /5TH SEM/ INFO 3133/2017 DISCRETE MATHEMATICS (INFO 3133)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable. Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
 - (i) Let be the proposition 'He is intelligent' and be the proposition 'He is tall'. Then (~q^~p) states that:
 - (a) He is either intelligent or tall
 - (b) He is neither tall nor intelligent
 - (c) He is intelligent but not tall
 - (d) He is intelligent and tall.
 - (ii) The proposition $\mathbf{p}^{\wedge}(\mathbf{q}^{\wedge} \sim \mathbf{q})$ is
 - (a) a contradiction
 - (b) a tautology
 - (c) neither a contradiction nor a tautology
 - (d) both a contradiction and a tautology.
 - (iii) The letters of APPLE can be arranged in how many ways? (a) 30 (b) 40 (c) 50 (d) 60.
- (iv) A connected planar graph with 5 edges determines 3 regions. The number of vertices of this graph is
 (a) 3 (b) 4 (c) 5 (d) 6.
 - (a) 3 (b) 4 (c) 5 (d) 6
- (v) If *a* is prime to *b*, then (a + b) is prime to (a) *ab* (b) $(a+b)^2$ (c) $(a+b)^3$ (d) $(a+b)^{10}$.
- (vi) In the poset ({2, 4, 5, 10, 12, 20, 25},|) ('|' stands for divisibility) one of the maximal elements is
 (a) 5 (b) 10 (c) 4 (d) 12.

B.TECH / IT /5TH SEM/ INFO 3133/2017

(vii) Total number of non-negative integer valued solutions to the equation x + y + z = 8, $x, y, z \ge 0$ is

(viii) The generating function for the sequence $\{2, 0, 2, 0, 2, 0, ...\}$ is

(a)
$$\frac{2}{1-2x} + \frac{1}{1-x}$$

(b) $\frac{1}{1-x} + \frac{1}{1+x}$
(c) $\frac{1}{1-x} - \frac{1}{1+x}$
(d) $\frac{2}{1-2x} - \frac{1}{1-x}$

- (ix) The chromatic number of a graph containing an odd circuit is (a) 4 (b) ≥ 4 (c) 3 (d) ≥ 3 .
- (x) A solution of the congruence is (a) 3 (b) 2 (c) 4 (d) 1.

Group - B

- 2. (a) Construct the truth table for: $((\mathbf{p} \to \mathbf{q}) \land (\mathbf{q} \to \mathbf{r})) \to (\mathbf{p} \to \mathbf{r}).$
 - (b) Without constructing a truth table, prove that $(p \lor q) \land (p \to r) \land (q \to r) \land \sim r \equiv F$ (contradiction). 6 + 6 = 12
- 3. (a) Find the CNF (Conjunctive Normal Form) of the following statement {q ∨ (p ∧ r) ∧~ (p ∨ r) ∧ q} Show your work in detail.
- (b) Prove by mathematical induction that the following proposition is true: P(n): " $n!>2^n \forall n\geq 4, n\in Z^+$ " where Z^+ denotes the set of all positive integers (stating clearly and in detail the inductive base, inductive hypothesis and inductive step.)

6 + 6 = 12

Group - C

- 4. (a) Determine whether the relation on the set of all integers is reflexive, symmetric, antisymmetric and transitive where $(x, y) \in R$ iff
 - (i) $x \equiv y \pmod{7}$ (ii) x is a multiple of y
 - (b) Let L be a distributive lattice. Show that if $\mathbf{a} \wedge \mathbf{x} = \mathbf{a} \wedge \mathbf{y}$ and $\mathbf{a} \vee \mathbf{x} = \mathbf{a} \vee \mathbf{y}$ for some $\mathbf{a} \in \mathbf{L}$, then $\mathbf{x} = \mathbf{y}$.

6 + 6 = 12

2

B.TECH / IT /5TH SEM/ INFO 3133/2017

- 5.(a) Calculate gcd(567, 315) and express gcd(567, 315) as 567u + 315v where u, v are integers.
- (b) Find the remainder when $1! + 2! + 3! + \dots + 50!$ is divided by 15.
- (c) Prove that if $ax \equiv ay \pmod{m}$ and a is prime to m, then $x \equiv y \pmod{m}$ 6 + 3 + 3 = 12

Group - D

- 6. (a) How many integers between 1 to 300 (both inclusive) are divisible by:
 (i) at least one of 3, 5, 7
 (ii) by 3 and 5 but not by 7
 - (b) (i) Find the number of integer solutions of the equation $x_1 + x_2 + x_3 + x_4 = 21$ where $x_1 \ge 8 \& x_2, x_3, x_4 \ge 0$ (ii)Find the number of integer solutions of the equation $x_1 + x_2 + x_3 + x_4 = 21$ with $0 \le x_1 < 8 x_2, x_3, x_4 \ge 0$.

(3+3) + (3+3) = 12

7. (a) Apply generating function technique to solve the following recurrence relation:

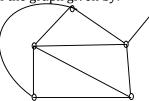
$$a_{n+2} - 7a_{n+1} + 10a_n = 0$$
 for $n \ge 0$, $a_0 = 3, a_1 = 36$.

(b) Solve the following recurrence relation:

$$a_n - 4a_{n-1} + 3a_{n-2} = 2^n$$
 for $n \ge 2$, $a_1 = 1, a_2 = 11$
6 + 6 = 12

Group - E

- 8. (a) Let G be a simple planar graph with n vertices and e edges, where $n \ge 3$. Then prove that $e \le 3n - 6$.
 - (b) Draw the dual of the graph given by:



(c) The vertices of a connected graph has following degree sequence {2, 2, 2, 3, 3, 3, 4, 4, 5}. If the graph is planar, how many faces will it have?

$$6 + 4 + 2 = 12$$

- В.ТЕСН / IT /5^{тн} SEM/ INFO 3133/2017
- 9. (a) Using Decomposition theorem, determine the chromatic polynomial of the following graph.

(b) Applicants M_1 , M_2 , M_3 , M_4 apply for five posts P_1 , P_2 , P_3 , P_4 , P_5 . The applications are done as follows :

 $M_1 \to \{P_1, P_2\}, M_2 \to \{P_1, P_3, P_5\}, M_3 \to \{P_1, P_2, P_3, P_5\}, M_4 \to \{P_3, P_4\}.$

4

Using graph theory find

- (i) whether there is any perfect matching of the set of applicants into the set of posts. If yes, find the matching.
- (ii) whether every applicant can be offered a single post.
- (c) Find the chromatic number of the wheel graph W_6 .

6 + (3 + 2) + 1 = 12