B.TECH/ECE/6TH SEM/ECEN 3202/2017

DIGITAL SIGNAL PROCESSING & APPLICATIONS (ECEN 3202)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following: $10 \times 1 = 10$

(i)	The digital system in $y[n] = x[n^2]$ is	
	(a) linear and causal	(c) linear and non causal
	(b) non linear and causal	(d) non Linear and non causal.

- (ii) The system described by the input-output equation y(n) = nx(n) + bx³(n) is a
 (a) static system
 (b) dynamic system
 (c) identical system
 (d) none of the mentioned.
- (iii) The system y(n) = cos[x(2n)] is

 (a) stable, linear and time-variant
 (b) stable, linear and time-invariant
 (c) unstable, non-linear and time-variant
 (d) unstable, linear and time-variant.

 (iv) What is the z-transform of the signal x(n) = (0.5)ⁿu(n)?

v J	What is the 2 transform of the signal x(ii)	
	(a) $\frac{1}{1-0.5z^{-1}}$; <i>ROC</i> : $ z > 0.5$	(b) $\frac{1}{1-0.5z^{-1}}$; <i>ROC</i> : $ z < 0.5$
	(c) $\frac{1}{1+0.5z^{-1}}$; <i>ROC</i> : $ z > 0.5$	(d) $\frac{1}{1+0.5z^{-1}}$; <i>ROC</i> : $ z < 0.5$

- (v) If $X(z) = z^{-1}(1-z^{-4})/4(1-z^{-1})^2$ then its final value is (a) i/4 (b) 0 (c) 1 (d) ∞ .
- (vi) A system characterized by the system function $H(z) = \frac{1}{2}(1 + z^{-1})$ is a(a) low pass filter(b) high pass filter(c) band pass filter(d) band stop filter.

1

B.TECH/ECE/6TH SEM/ECEN 3202/2017

- (vii) Which of the following method is used to restrict the inverse filter to be FIR?
 - (a) Truncating $h_{I}(n)$
 - (c) Truncating $H_1(z)$
- (viii) IIR filter is (a) recursive and linear
 - (c) non recursive and linear
- (ix) An FIR filter is(a) unstable and linear phase(c) stable and linear phase
- (b) stable and non linear phase (d) unstable and non linear phase.

(b) Expanding $h_{I}(n)$

(d) none of these.

(d) None of the mentioned.

(b) recursive and non linear

(x) Down sampler is usually preceded by a LPF. This combination is called
 (a) Decimator
 (b) Rational sampling rate converter
 (c) Interpolator
 (d) none of these.

Group – B

- 2. (a) Determine the range of value of the parameter a for which the linear time invariant system with impulse response $h(n) = a^n$ is stable.
 - (b) Find the impulse response of the system described by difference equation y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) using z-transform.
 - (c) Determine the convolution of the following pair of signals: $x_1(n) = u(n)$ $x_2(n) = \delta(n) + (1/2)^n u(n)$

3 + 5 + 4 = 12

- 3. (a) What is 'Z' transform & how do you define ROC?
 - (b) Find out the Z transform of x(n) = n.a^n.sin(w.n).u(n)
 - (c) What is inverse 'Z' transform? Find out the inverse 'Z' transform of X(Z) = z/(3z^2 4z + 1.) With ROC
 (i) |Z| < 1/2
 (ii) |Z| > 2.
 2 + 4 + 6 = 12

Group – C

- 4. (a) Prove the circular time shifting property $x((n-l))_N = X(k) e^{-j2\pi k l/N}$.
 - (b) Using linear convolution find y(n) = x(n) * h(n) for the sequence $x(n) = \{1, 2, -1, 1, 1, 2, -1\}$ and $h(n) = \{1, 2\}$ and compare the result by solving problem using overlap save method for N = 4.

4 + 8 = 12

B.TECH/ECE/6TH SEM/ECEN 3202/2017

- 5. (a) What is FFT? How do you get the Radix 2 FFT algorithm?
 - (b) Derive the expression of DIT algorithm.
 - (c) Determine 8 point DFT of $x(n) = \{0, 1, 2, 3\}$ using DIF butterfly structure. 2 + 3 + 7 = 12

Group – D

6. (a) Design a Butterworth filter for the following specification using(i) Bilinear transformation method

(ii) Impulse invariance method $0.8 \le |H(e^{jw})| \le 1$ $0 \le w \le 0.2\pi$ $|H(e^{jw})| \le 0.2$ $0.6\pi \le w \le \pi$

- 7. (a) What is Gibs phenomenon? Explain with diagram. How do you avoid the bad effect of Gibbs phenomenon?
 - (b) Design an ideal FIR low pass filter with a frequency response $H_d(e^{jw}) = 1$ for $-\pi/2 \le \omega \le \pi/2$ = 0 for $\pi/2 \le |\omega| \le \pi$ Find the values of h(n) for N = 11. Find H(Z) and plot the magnitude response.

(1+1+2)+8=12

 $(6 \times 2) = 12$

Group – E

8. (a) Realize the system given by following difference equation y(n) = -0.1y(n-1) + 0.72y(n-2) + 0.7x(n) - 0.252x(n-1) in parallel form.

3

(b) Realize the system function $H(Z) = 1/2 + 1/3(Z^{-1}) + Z^{-2} + \frac{1}{4}(Z^{-3}) + Z^{-4} + \frac{1}{3}(Z^{-5}) + \frac{1}{2}(Z^{-6})$ using any method.

$$6 + 6 = 12$$

- 9. Write short notes on any two of following.
 - (i) Butterworth filter
 - (ii) Bilinear transformation.
 - (iii)Decimation and Interpolation
 - (iv) Architecture of TMS 320C5416.

 $(6 \times 2) = 12$