B.TECH/ECE/4TH SEM/ECEN 2201/2017

(vi) Which one of the following general boundary conditions at the interface between two media is incorrect?

(a)
$$(\overrightarrow{D_1} - \overrightarrow{D_2}). \overrightarrow{a_n} = \rho_s$$

(b) $(\overrightarrow{B_1} - \overrightarrow{B_2}). \overrightarrow{a_n} = 0$
(c) $\overrightarrow{a_n} \times (\overrightarrow{H_1} - \overrightarrow{H_2}) = -\overrightarrow{J_s}$
(b) $(\overrightarrow{B_1} - \overrightarrow{B_2}). \overrightarrow{a_n} = 0$
(c) $\overrightarrow{a_n} \times (\overrightarrow{E_1} - \overrightarrow{E_2}) = 0$

(vii) While using mobile phone within elevators, call drop may occur due to (a) $\alpha = \sqrt{\pi f \mu \sigma}$ (b) $\beta = \sqrt{\pi f \mu \sigma}$ (c) $\delta = \frac{1}{\sqrt{\pi f \mu \sigma}}$ (d) both (a) and (c).

(c)
$$\delta = \frac{1}{\sqrt{\pi f \mu \sigma}}$$
 (d) both (a) and

- (viii) The input impedance of a half wave lossless transmission line of
characteristic resistance of 50 Ω is terminated in a load resistance of 75 Ω is
(a) 75 Ω (b) 50 Ω
(c) 33.33 Ω (d) 11.25 Ω .
- (ix) An open circuited load of a lossless transmission line is located on the Smith chart at
 - (a) extreme left point on the real u axis of the constant $r = \infty$ circle.
 - (b) extreme right point on the real u axis of the constant $r = \infty$ circle.
 - (c) extreme left point on the real u axis of the constant r = 0 circle.
 - (d) extreme right point on the real u axis of the constant r = 0 circle.
- (x) The power flow through a straight wire of circular cross section aligned along z axis through which a direct current flows in the negative z direction is
 - (a) along the positive z direction
 - (b) along the negative z direction
 - (c) in the radially inward direction
 - (d) radially outward in the conductor.

Group – B

- 2. (a) Let $\mathbf{A} = \rho \cos \phi \mathbf{a}_{\rho} + \rho z^2 \sin \phi \mathbf{a}_z$. Transform into rectangular coordinates and calculate its magnitude at point (3, -4, 0).
 - (b) Given a vector field $\mathbf{D} = r \sin \phi \mathbf{a}_r \frac{1}{r} \sin \theta \cos \phi \mathbf{a}_{\theta} + r^2 \mathbf{a}_{\phi}$. Determine \mathbf{D}
 - (i) at $P(10, 150^{\circ}, 330^{\circ})$
 - (ii) the component of ${\boldsymbol D}$ tangential to the spherical surface $r=10\,$ at P .

(iii) the vector at P perpendicular to **D** and \mathbf{a}_{θ} .

$$6 + (1 + 2 + 3) = 12$$

B.TECH/ECE/4TH SEM/ECEN 2201/2017

- 3. (a) Establish relation between Electric field and potential.
 - (b) Show that the static electric field \vec{E} due to a point charge is irrotational.
 - (c) A parallel plate capacitor is filled with a dielectric medium, the relative permittivity of which varies linearly from one plate of the capacitor to the other, separated by a distance d from ε_{r1} to ε_{r2} . Obtain an expression for the capacitance of the capacitor C in terms of ε_{r1} , ε_{r2} , d and A the plate area, the dimensions of the plate considered large compared to d.

3 + 3 + 6 = 12

Group – C

- 4. (a) State Biot-Savart law. Using such a law, find the magnetic field around a line placed on the *z* axis while, carrying a steady current *I*.
 - (b) Suppose a coaxial transmission line is placed on the *z* axis, as shown in the figure below. The inner core of radius *a* is carrying a current *I* towards you while the outer core having radius *b* and thickness *t* is carrying -I into the page. Using Ampere's law, find the magnetic fields everywhere around the transmission line. Prepare a plot illustrating the variations of the field strength with respect to the radial vector ρ .

5. (a) Starting from Maxwell's equation establish the wave equation in electric field in a source present (volume charge density $\rho \neq 0$ and current density $J \neq 0$) medium in terms of the volume charge density and current density.

ECEN 2201

3

B.TECH/ECE/4TH SEM/ECEN 2201/2017

(b) A region is divided in to two parts: region 1 [$z \le 0$; $\mu_1 = 60 \ \mu_0$ (iron)] and region 2 [$z \ge 0$; $\mu_2 = \mu_0$ (free space)], across the interface z = 0. Hence determine $\overline{B_2}$ if $\overline{B_1} = 6\overline{a_x} + 12\overline{a_y}$ T.

6 + 6 = 12

Group – D

- 6. (a) If a transmission line of characteristic resistance 50 Ω is terminated in complex impedance 25 + j100 Ω , what will be the reflection coefficient and the VSWR of the line?
 - (b) What do you understand by the reflection coefficient and the voltage standing wave ratio VSWR of a transmission line? Deduce the relation between them.
 6 + (3 + 3) = 12
- 7. (a) Using suitable diagram show that the voltage at any point in a transmission line can be expressed as $V(z) = V_0^+ e^{-\gamma z} + V_0^- e^{\gamma z}$, where V_0^+ and V_0^- represent initial values at the source and load point. Also

find the expression of γ in terms of the line parameters.

(b) A distortion-less line has $Z_0 = 60\Omega$, $\alpha = 20 \text{ mNp/m}$, u = 0.6c and $\beta = 1.5$ rad/m. Find the line parameters R, L, G, C and λ at 100 Mhz. 6 + 6 = 12

Group – E

- 8. (a) Derive Friis Transmission formula for two antenna system.
 - (b) Radiated power density is given as $W = \frac{A_m \sin^2 \theta}{r^2}$. What will be the value of directivity?
 - (c) Express E and H fields of an Hertzian dipole for (i) near field (ii) intermediate field (iii) far field regions.

4 + 3 + (2 + 2 + 2) = 12

- 9. (a) Discuss the advantages of using an array of antenna elements over a single antenna element.
 - (b) Explain the following antenna parameters:(i) Directivity (ii) Gain (iii) Aperture Efficiency (iv) Radiation Resistance.
 - (c) Deduce the expression for FNBW and HPBW of a uniform broadside array in terms of number of elements, the separation between the elements and the wavelength.

3 + (1 + 1 + 1 + 1) + 5 = 12

B.TECH/ECE/4TH SEM/ECEN 2201/2017

EM THEORY & TRANSMISSION LINE (ECEN 2201)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

 $10 \times 1 = 10$

- (i) Which of the following expression is incorrect (a) $\nabla . \vec{E} = \rho$ (b) $\nabla . \vec{B} = 0$ (c) $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ (d) $\oint \vec{H} . \vec{dl} = \int_{S} \left(\vec{J} + \frac{\partial \vec{D}}{\partial t}\right) . \vec{a_n} dS$
- (ii) The unit of magnetic vector potential is
 (a) Wb/m
 (b) Wb/m²
 (c) T/m
 (d) T/m².
- (iii) Due to a net negative charge $\rho(t) (C/m^3)$ stored within a volume v enclosed by a surface **s**, the equation $I = \oint J. ds$ can equally be written as

a)
$$\nabla \cdot \mathbf{J} = -\frac{d\rho}{dt}$$
 (b) $\oint J \cdot ds = -\frac{d}{dt} \int \rho \, dv$
c) both (a) and (b) (d) none of the above.

- (iv) The point charge q' at the centre of a system of point charges, each q, situated at the corners of a square will keep the system in equilibrium if (a) q' = -4q (b) q' = 0(c) $q' = -[(1+2\sqrt{2})/4] q$ (d) $q' = -[(1+4\sqrt{2})/4] q$.
- (v) The line parameters used for a transmission line are assumed as
 (a) lumped
 (b) distributed
 (c) discrete
 (d) all of the above.

ECEN 2201

1

4