B.TECH/CSE/IT/7TH SEM/ MATH 4181/2017

OPERATIONS RESEARCH AND OPTIMIZATION TECHNIQUES (MATH 4181)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

 $10 \times 1 = 10$

- (i) If at least one of the basic variable is zero, then a basic feasible solution of an L.P.P. is
 - (a) degenerate

(b) non-degenerate

(c) infeasible

- (d) unbounded.
- The dual of the dual of an LPP is
 - (a) dual
- (b) primal
- (c) nonlinear (d) a different LPP.
- In a transportation problem of size $m \times n$ a feasible solution is called a basic solution if the number of non-negative allocation is equal to

- (a) m n + 1 (b) m n 1 (c) m + n 1 (d) none of these.
- (iv) In the optimal simplex table if any of the non basic variables attains a zero net evaluation then the LPP has
 - (a) unbounded solution
- (b) no feasible solution
- (c) unique optimal solution
- (d) alternative solution.
- To standardize an L.P.P. with "≤" type constraints, which variables are introduced
 - (a) slack
- (b) surplus
- (c) artificial
- (d) unrestricted.
- (vi) Which of the following elimination methods is most efficient to find the local optima of an unimodal function of one variable?
 - (a) Golden section method

(b) Fibonacci Method

(c) Interval Halving

(d) Dichotomous Search.

B.TECH/CSE/IT/7TH SEM/MATH 4181/2017

- (vii) The point of intersection of pure strategies in a game is called
 - (a) value of the game
- (b) saddle point
- (c) mixed strategy (d) optimal strategy.
- The function $f(x, y) = xy^2(2 x y)$ has, at point (0, 2)(viii)
 - (a) a local maximum point
- (b) a local minimum point

(c) a saddle point

- (d) none of these.
- The Hessian matrix of function f(x, y) is given by (ix)

$$Hf(x,y) = \begin{pmatrix} x^2 + 2 & -1 \\ -1 & 1 \end{pmatrix}.$$

If f(x, y) had a stationary point then this point would be

- (a) a global maximum point
- (b) a global minimum point

(c) a saddle point

- (d) none of these.
- Given the optimization problem (x)

$$min f(x, y)$$

 $subject to 3x - 6y = 9$

If $(x, y, \lambda) = (1, -1, 3)$ is a stationary point of the associated Lagrange function, it can be assured that (1,-1) is a global minimum of the problem when the function f(x, y) is

(a) onvex

(b) non-convex

(c) concave

(d) neither convex nor concave

Group - B

2. (a) Solve the following L.P.P. graphically

Minimize
$$z = 20x_1 + 10x_2$$

subject to
 $x_1 + 2x_2 \le 40$
 $3x_1 + x_2 \ge 30$
 $4x_1 + 3x_2 \ge 60$
 $x_1, x_2 \ge 0$

(b) Solve the following L.P.P. by Simplex method

Maximize
$$z = x_1 + x_2 + 3x_3$$

subject to
 $3x_1 + 2x_2 + x_3 \le 3$
 $2x_1 + x_2 + 2x_3 \le 2$
 $x_1, x_2, x_3 \ge 0$

2

4 + 8 = 12

B.TECH/CSE/IT/7TH SEM/ MATH 4181/2017

3. (a) Use the 'Big-M' method to solve the following linear programming problem:

Maximize
$$z = 4x_1 + 5x_2$$

Subject to
 $x_1 + x_2 \le 4$
 $2x_1 + 3x_2 \ge 12$
 $4x_1 + 3x_2 \ge 18$
 $x_1, x_2 \ge 0$

(b) Write the dual of the following LPP:

Maximize
$$z = 2x_1 + 3x_2 - 4x$$

Subject to
 $3x_1 + x_2 + x_3 \le 2$
 $-4x_1 + 3x_3 \ge 4$
 $x_1 - 5x_2 + x_3 = 5$

 $x_1, x_2 \ge 0$ and x_3 is unrestricted in sign

$$8 + 4 = 12$$

Group - C

4. (a) Obtain an initial basic feasible solution and total cost of transportation to the following Transportation problem using North-West corner rule. Is that initial basic feasible solution non-degenerate?

	<u> </u>						
	$\overline{\mathrm{D_1}}$	D_2	$\overline{D_3}$	$\overline{\mathrm{D}_{4}}$	Supply		
0_1	4	6	8	8	40		
02	6	8	6	7	60		
0_3	5	7	6	8	50		
Demand	20	30	50	50			

(b) Find the optimal assignment and minimum cost for the assignment with the following cost matrix

	I	II	III	IV	V
A	6	5	8	11	16
В	1	13	16	1	10
С	16	11	8	8	8
D	9	14	12	10	16
Е	10	13	11	8	16

5. (a) Use dominance to reduce the following game problem to a 2×2 game and hence find the optimal strategies and the value of the game

B.TECH/CSE/IT/7TH SEM/MATH 4181/2017

Player A 1 7 2 0 2 7 5 1 6

(b) Solve graphically the game whose payoff matrix is given by

Player B							
Player A	1	3	0	2			
riayei A	3	0	1	-1			

6 + 6 = 12

Group - D

6. (a) Find the point (x_1, x_2, x_3) at which the following function $f(x_1, x_2, x_3) = -x_1^2 - x_2^2 - x_3^2 + x_1x_2 + x_1 + 2x_3$ attains a local optima.

(b) Solve the following non-linear programming problem using Lagrange multiplier method:

Minimize
$$f(x_1, x_2, x_3) = 4x_1^2 + 2x_2^2 + x_3^2 - 4x_1x_2$$

Subject to the constraints $x_1 + x_2 + x_3 = 15$
 $2x_1 - x_2 + 2x_3 = 20$
 $x_1, x_2, x_3 \ge 0$

8 + 4 = 12

7. (a) Maximize $f(x_1, x_2) = 10x_1 - x_1^2 + 10x_2 - x_2^2$ Subject to the constraints

$$x_1 + x_2 \le 8 -x_1 + x_2 \le 5 x_1, x_2 \ge 0$$

by applying Kuhn-Tucker conditions.

(b) Show that the function $f(x_1, x_2) = x_1x_2 - x_1^2 - x_2^2$ is concave over \mathbb{R}^2 .

10 + 2 = 12

Group - E

 $8. \ Write the \ Dichotomous \ Search \ algorithm$ and use the algorithm

$$f(x) = -x^2 - 2x \text{ over } [-3, 6]$$

assuming the optimal tolerance to be less than 0.2.

12

9. Write the Golden Section Search Algorithm for unimodal functions of one variable and using the algorithm maximize $f(x) = -x^2 - 2x$ over $-3 \le x \le 6$ with a tolerance to be less than 0.2.

4