B.TECH/CSE/7TH SEM/CSEN 4144/2017

- (vi) The complexity of the k-means algorithm would depend on
 - (a) only K, number of iterations
 - (b) only Number of points, K
 - (c) only number of iterations
 - (d) all of the above combined dimensions.
- (vii) DBSCAN uses k-nearest neighbour distance to find the parameter
 - (a) Eps (radius)

(b) MinPts

(c) Core points

- (d) Noise points.
- (viii) Support Vector Machine can be used to classify
 - (a) linearly separable data only
 - (b) non-linearly separable data only
 - (c) both linearly and non-linearly separable data
 - (d) none of the above.
- (ix) Which of the following is finally produced by Hierarchical Clustering?
 - (a) Final estimate of cluster centroids
 - (b) Tree showing how close things are to each other
 - (c) Assignment of each point to clusters
 - (d) All of the mentioned.
- (x) When a rule-set is both mutually exclusive as well as exhaustive, some instance in the training dataset may be covered by,
 - (a) more than one rule

(b) exactly one rule

(c) no rule

(d) none of the above.

Group - B

- 2. (a) Define Information gain.
 - (b) Construct (induct) a decision tree using information gain from the data provided in the table 1. Consider the Gender as the class label.

Table 1

Sl. No.	Over 170CM	Eye	Hair length	Gender
1	No	Blue	Short	Male
2	Yes	Brown	Long	Female
3	No	Blue	Long	Female
4	No	Blue	Long	Female
5	Yes	Brown	Short	Male
6	No	Blue	Long	Female
7	Yes	Brown	Short	Female
8	Yes	Blue	Long	Male

3 + 9 = 12

B.TECH/CSE/7TH SEM/CSEN 4144/2017

- 3. Consider the diagram of Fig.1. Justify with reason, which rule a R1, R2 and R3 is the best according to the following measures?
 - (i) Likelihood ratio statistic
 - (ii) Laplace
 - (iii)m-estimate.

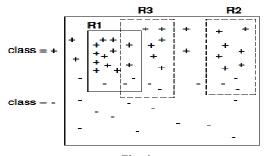


Fig. 1

 (3×4)

Group - C

- 4. (a) Suppose a support vector machine for separating pluses from mi finds a plus support vector at the point x1 = (1, 0), a minus su vector at x2 = (0, 1). You are to determine values for the classification vector w and the threshold value b.
 - (b) Construct the Lagrangian for the primal optimization proble finding the support vectors for a two-class linearly sepaclassification problem.

5 + 7

Given this dataset of Table 2, can you predict using Naïve Bayes class whether a Red SUV from Domestic makers will be stolen or not? Use the m-estimate method with m = 3, p = 0.5.

Table 2

Example No.	Color	Type	Origin	Stolen?
1	Red	Sports	Domestic	Yes
2	Red	Sports	Domestic	No
3	Red	Sports	Domestic	Yes
4	Yellow	Sports	Domestic	No
5	Yellow	Sports	Imported	Yes
6	Yellow	SUV	Imported	No
7	Yellow	SUV	Imported	Yes
8	Yellow	SUV	Domestic	No
9	Red	SUV	Imported	No
10	Red	Sports	Imported	Yes

Group - D

- Draw the FP-Growth Tree for the following transaction dataset of Table 3. (a)
 - (b)Draw the prefix paths ending with ..-c-e and ..-d-e.

Table 3

TID	Items {a,b}		
1			
2	{b,c,d}		
3	{a,c,d,e} {a,d,e}		
4			
5	{a,b,c} {a,b,c,d}		
6			
7	{a}		
8	{a,b,c}		
9	{a,b,d} {b,c,e}		
10			

8 + 4 = 12

- Prove that the total number of possible rules extracted from a dataset that contains d items is, $R = 3^d - 2^{d+1} + 1$.
 - With an example, briefly explain apriori algorithm.

9 + 3 = 12

Group - E

Perform hierarchical clustering method MAX (complete link) on the dataset provided 8. in Table 4 to generate a cover. Try to approximately plot them on a 2D plane and show the nested clusters. Also show the dendrogram with merging distance on Y-axis.

Table 1

Tuble 4				
Points	X co-ordinate	Y co-ordinate		
p1	1	7		
p 2	2	12		
р3	7	4		
p4	11	3		
p5	5	5		
p6	7	12		
p 7	3	3		
p8	5	7		
p9	3	12		
p10	10	5		
p11	8	7		
p12	9	2		

12

12

Perform K-means clustering on the dataset provided in Table 4, where K = 3. 9. Randomly generate the initial centroids and perform the algorithm for up to a maximum of four iterations. Show the movement of the centroids and the clusters (for every iteration) by drawing the points and the clusters on the X and Y co-ordinates. Show all the calculations clearly.

B.TECH/CSE/7TH SEM/CSEN 4144/2017

DATA MINING AND KNOWLEDGE DISCOVERY (CSEN 4144)

Time Allotted: 3 hrs Full Mark

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practice

Group - A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

 10×1 :

- Cluster is
 - (a) group of similar objects that differ significantly from other ob
 - (b) operations on a database to transform or simplify data in or prepare it for a machine-learning algorithm
 - (c) symbolic representation of facts or ideas from which inforn can potentially be extracted
 - (d) none of these.
- (ii) You are given data about seismic activity in Japan, and you we predict a magnitude of the next earthquake, this is an example of
 - (a) Dimensionality Reduction
 - (b) Supervised Learning
 - (c) Unsupervised Learning
 - (d) Reinforcement Learning.
- (iii) In a picture, where 7 cats and 10 dogs are present, your dog det algorithm has detected 9 entities, out of which only 6 are dog remaining are cats. What is the precision of your algorithm? (d
 - (a) 0.6
- (b) 0.66

(c) 6/17

(iv) The goal in Naïve Bayes classifier is to predict class label using,

(a) posterior probability

(b) prior probability

(c) likelihood

- (d) evidence.
- (v) A lending company wants to estimate the loan amount for a cus who has applied for a possible loan, this is an example of?

1

(a) Clustering

(b) Classification

(c) Prediction

(d) Association Rule.