B.TECH / CSE /5TH SEM/ CSEN 3102/2017 DATABASE MANAGEMENT SYSTEMS (CSEN 3102)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable. Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
 - (i) A functional dependency X→Y means that association from the domain of X to domain of Y is:
 (a) many to many
 (b) one to many

(a) many to many	(b) one to many
(c) many to one	(d) none of the above.

(ii) **Statement 1:** It is not always possible to normalize a relation to BCNF decomposition, preserving all functional dependencies and lossless join property.

Statement 2: It is always possible to normalize a relation to 3NF decomposition preserving all functional dependencies and lossless join property.

Considering the above two statements choose the right option from the followings:

(a) Only Statement 1 is correct.

(b) Only Statement 2 is correct

- (c) Both Statement 1 and Statement 2 are correct
- (d) Both Statement 1 and Statement 2 are incorrect.
- (iii) **Statement 1:** If a schedule S1 is conflict serializable, then it implies that S1 will also be view serializable.

Statement 2: If a schedule S2 is view serializable, then it implies that S2 will also be conflict serializable.

Considering the above two statements choose the right option from the followings:

- (a) Only Statement 1 is correct. (b)Only Statement 2 is correct
- (c) Both Statement 1 and Statement 2 are correct
- (d) Both Statement 1 and Statement 2 are incorrect.

(iv) _____is an abstraction through which relationships are treated as higher level entities.
 (a) Generalization
 (b) Specialization
 (c) Aggregation
 (d) Inheritance.

(v) Which of the following statement is true?

B.TECH / CSE/5TH SEM/ CSEN 3102/2017

- (a) Isolation property of a transaction can never be achieved under a concurrent execution schedule of transactions.
- (b) Atomicity property of transaction can only be achieved under a serial execution schedule of transactions.
- (c) Consistency property of a transaction can be achieved by controlling concurrency of a executing schedule of transactions.
- (d) Durability property of a transaction can only be achieved by controlling concurrency executing schedule of transactions.
- (vi) In a relation R, a multivalued dependency $A \rightarrow \rightarrow B$ is called trivial if

(a) $A \cap B = \Phi$	(b) B ∪ A = R
(c) either (a) or (b)	(d) none of them.

- (vii) A decomposition of R to R1 and R2 is lossless-join decomposition if
 - (a) common attributes between R1 and R2 forms a super key of either R1 or R2.
 - (b) common attributes between R1 and R2 forms a super key of both R1 and R2.
 - (c) common attributes between R1 and R2 forms a super key of R1, but not R2.
 - (d) common attributes between R1 and R2 forms a super key of R2 but not R1.
- (viii) What are the desirable properties of a decomposition?

(a) Partition constraint	(b) Dependency preservation
(c) Redundancy	(d) Security.

- (ix) If a schedule S can be transformed into a schedule S' by a series of swaps of non-conflicting database read/write instructions , then S and S' are always:
 - (a) Conflict Equivalent to each other
 - (b) View Equivalent to each other
 - (c) both (a) and (b)
 - (d) none of these.

CSEN 3102

B.TECH / CSE/5TH SEM/ CSEN 3102/2017

(x) If $A \rightarrow B$ and ______ holds on a Relation R, then $AC \rightarrow D$ also holds on R.

(a) $BC \rightarrow D$ (b) $AB \rightarrow C$ (c) either (a) or (b) (d) none of these.

Group - B

2. (a) Convert the ER – diagram shown in fig. 1 into a relational database (the primary keys are underlined):

- (b) Differentiate with example between
 - (i) Single value and multiple valued attribute.
 - (ii) Candidate and super key.
 - (iii) Partial and primary key.

 $6 + (3 \times 2) = 12$

3. Write relational algebra expressions of the queries involving the following relations of a database of a engineering college :

STUDENT(rollno, name, courseId, enrolled_session); COURSE(courseId,courseName, Dept_Id), SUBJECT_PAPER(pcode, pname, courseId, semesterNo) ; MARKS_OBTAINED(rollno, pcode , marks, year_of_exam), DEPARTMENT(Dept_Id, Dname), Faculty(empid, name, sal, Dept_id), Subject_Taught(empid, pcode, session)

- (a) Find the minimum salary of that department, whose average faculty salary is maximum among all other departments.
- (b) Find the name and rollno of students, who have obtained highest marks in the subject CSEN1201, on the year 2016.
- (c) Find the name of faculties who have not taught any subject of 8^{th} semester during the session 2016.

$(3 \times 4) = 12$

Group - C

4. The set of Functional Dependencies F on a relation R(A,B,C,D,E) are given below : A→BC; EB→C; AB→C; A→B; AC→D; E→B;ABC→D; AB→E; EB→A (i) Compute canonical cover, i.e., irreducible set of FDs equivalent to the given set F (ii) Find all the candidate keys of this relation R.

(6 + 6) = 12

B.TECH / CSE/5th SEM/ CSEN 3102/2017

- 5. (a) Define Boyce Codd Normal form (BCNF)?
 - (b) Determine whether the following relations R1 and R2 are in BCNF, or not?
 i) A relation R1(A, B, C) along-with FDs applicable to it are: AB→C; C→B.
 ii) A relation R2(W, X, Y, Z) along-with FDs applicable to it are: XY→W; XZ→W; Y→Z; Z→Y.

Decompose the relations to BCNF, if possible, in a lossless manner by preserving all the functional dependencies.(Justify your answer for both the cases and also show the BCNF decomposition, in case it is possible.)

2 + 5 + 5 = 12

Group – D

6. The tables in the database of a engineering college are as follows: STUDENT(rollno, name, courseId, session); COURSE(courseId,courseName, Dept_Id), SUBJECT_PAPER(pcode, pname, courseId, semesterNo); MARKS_OBTAINED(rollno, pcode, marks, year_of_exam), DEPARTMENT(Dept_Id, Dname), Faculty(empid, name, sal, Dept_id), Subject_Taught(empid,pcode,session) Write the SQL statement for the following queries using the given tables:

- (i) Find the name of the topper(s) of CSE 1st Semester of 2005 session.
 [Note: topper of a semester means one who obtained maximum aggregate marks considering all subjects of that semester]
- (ii) Find the faculties who have taught maximum number of subjects in odd Semester of 2017 session and display their name along with number of subjects taught.
- (iii) Display the name of the department that conducts course named "M.Tech in VLSI Design".
- (iv) Display the lowest salary of each department along with department name, in the descending order of the department's lowest salary.

(4 + 4 + 2 + 2) = 12

12

7. Consider the relation Bank(Account_Id, Account_type, Amount, Cust_id, Cust_name,branch_name, city, head_Branch_name) and the set of functional dependencies:

 $F = \{Account_Id \rightarrow Account_type; Cust_id \rightarrow Cust_name; Account_Id \rightarrow branch; Account_Id \rightarrow Amount; branch \rightarrow city; city \rightarrow head_Branch\}.$

Decompose the relation Bank to 3^{rd} Normal Form with respect to F. In detail, explain how each normal form is satisfied by each decomposed relation at each step of normalization.

Group – E

8. (a) Consider two transactions T1 and T2 with following database operations: T₁: R₁(A) $W_1(A)$ R₁(B) $W_1(B)$ T₂: R₂(A) $W_2(A)$ R₂(C) $W_2(C)$

where, $R_i(x)$ and $W_i(x)$ are read and write operations of T_i on data item x respectively. Find out whether the following concurrent schedule S is conflict serializable or not - justify your answer.

 $S = R_1(A) W_1(A) R_2(A) W_2(A) R_1(B) W_1(B) R_2(C) W_2(C)$

(b) Describe two phase locking protocol? How does it guarantee conflict serializability?

5 + (3 + 4) = 12

- 9. Write short notes on (any three) of the following:
 - (i) Query Processing.
 - (ii) Disadvantages of file based systems.

(iii) Log based recovery.

(iv) B-tree.

 $(3 \times 4) = 12$

(