B.TECH / CSE /5TH SEM/ CSEN 3101/2017 FORMAL LANGUAGE & AUTOMATA THEORY (CSEN 3101)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
 - (i) If L_1 and L_2 are two Context Free Languages then which one is not true?
 - (a) Union of L_1 and L_2 , i.e., $L_1 \cup L_2$ is a Context Free Language
 - (b) Intersection of L_1 and L_2 , i.e., $L_1 \cap L_2$ is a Context Free Language
 - (c) Concatenation of L_2 and L_1 , i.e., L_2L_1 is a Context Free Language
 - (d) Star closure of L_1 , i.e., L_1^* is a Context Free Language.
 - (ii) A minimum state DFA accepting the language $L = \{w \mid w \in (0,1)^*, where the number of 0's and 1's of w are divisible by 3 and 4, respectively} has$

(a) 9 states (b) 12 states (c) 15 states (d) 16 states.

- (iii) If the regular set A is represented by A = (01 + 1)* and the regular set B is represented as B = (01)*1* then
 - (a) $A \subset B$ (b) $A \supset B$ (c) A and B are incomparable (d) A = B.
- (iv) A compiler must check the following syntactic error in a program : Every opening curly bracket, i.e., '{' must be associated with a closing curly bracket, i.e., '}'.

Which machine is sufficient (according to computation power) to decide it?

- (a) Deterministic Finite Automata
- (b) Non Deterministic Finite Automata
- (c) Pushdown Automata
- (d) Turing Machine.

B.TECH / CSE/5th SEM/ CSEN 3101/2017

(v) Recognize the language for the given grammar.

```
\begin{array}{c} S \rightarrow XY \\ X \rightarrow aX \ / \ bX \ / \ a \\ Y \rightarrow Ya \ / \ Yb \ / \ a \end{array}
(a) has at least one 'b'
(b) should end in a 'a'
(c) has no consecutive a's or b's
(d) has at least two 'a' s.
```

- (vi) Pumping lemma for Context Free Languages is used for proving whether
 - (a) a given language is Context Free
 - (b) a given language is not regular.
 - (c) two given Context Free Languages are equivalent
 - (d) a given language is not Context Free.
- (vii) Suppose that L_4 and L_5 are two languages (over the same alphabet) given to you such that both L_4 and L_4L_5 are regular. Then which of the following is correct?
 - (a) L₅ must be regular too.
 - (b) L₅ can never be regular

(a) L_1 is a deterministic CFL

(c) L_3 is a CFL

- (c) L_5 need not be regular
- (d) Cannot say anything about L_5 .
- (viii) Consider the following three languages:
 - L₁ = {wwR | $w \in (0,1)^*$ } L₂ = {w # wR | $w \in (0,1)^*$ }, where # is a special symbol
 - $L_3 = \{ww \mid w \in (0,1)^*\}$

		L.		- (-,	,	,
Which	one	of the	folle	owing	is	false?

- (b) L₂ is a deterministic CFL (d) both (a) and (c).
- (ix) Which of the following regular expressions best represent the language L over Σ = {a, b} such that all the string do not contain the substring "ab".
 (a) a*b*
 (b) b*a*
 (c) (ab)*
 (d) (ba)*.
- (x) Which of the following machines can accept the language L_6 which is the set of all palindromes from $\{a, b\}^*$?
 - (a) Nondeterministic Finite Automata
 - (b) Deterministic Pushdown Automata
 - (c) Nondeterministic Pushdown Automata
 - (d) None of the above

Group - B

- 2. (a) Construct a deterministic finite automata for the language given below: All binary strings divisible by 2 or 3.
 - (b) Design a one-input one-output sequence detector that produces an output value 1 every time the sequence "**1110**" is detected, over output symbols **{0, 1}**.
- (c) State the differences between NFA and DFA if exists any.

5 + 5 + 2 = 12

3.(a) A finite state machine M₁ has the state transition diagram shown in fig. 1. The start state is **a** and the final states are **c**, **d**, **e**. Minimize the number of states in the machine.

(b) Consider the set of strings L_{12} on the alphabet $\{0, 1\}$ that contains even number of 0's. Consider another set of strings L_{13} on the alphabet $\{0, 1\}$ that contains odd number of 1's. Design a deterministic finite state acceptor (dfsa) M_2 (using state table or state transition diagram) that will accept $L_{12} \cap L_{13}$.

Group - C

4. (a) Construct a Regular Expression for the given machine M₃ shown in fig. 2.

(b) Construct a deterministic finite state acceptor (dfsa) M_4 on the input alphabet { 0, 1 } that accepts a string α if and only if α is contained in the regular expression (0 + 1)* (00 (11 + 0)*) (01)*.

7 + 5 = 12

6 + 6 = 12

B.TECH / CSE/5TH SEM/ CSEN 3101/2017

- 5. (a) Check out whether this language is regular or not : $L = \{0^m 1^n 0^p \mid m, n, p \ge 0\}$ Give proper justification for your answer.
 - (b) Design a FSA, which will accept the following regular expression: $r_1^*r_2(r_4 + r_3r_1^*r_2)^*$
 - (c) "Pumping lemma can be used to prove that a given language is regular."– is the statement correct? If so then explain.

$$5 + 5 + 2 = 12$$

- 6.(a) When a Context free grammar will be called ambiguous? Explain your answer with an example.
- (b) Consider the following context-free grammar G:

$$S \rightarrow AB$$

 $A \rightarrow aA \mid bB \mid b$
 $B \rightarrow b$

Convert G to Greibach Normal Form (GNF).

(c) Prove that Context Free Languages are closed under union operation.

(2+3)+4+3=12

- 7.(a) Determine whether the following grammar is ambiguous or not : $S \rightarrow a/Sa/bSS/SSb/SbS$
 - (b) Design a push down automata that will accept the following language: L = {aⁱ b^j c^k | j = i + k and i, k ≥ 0}

6 + 6 = 12

Group – E

- 8. (a) Design a Turing machine M_5 which copies string of 1's . More precisely find a machine that performs the following operation: $q_0w \models q_fww$
- (b) Given two positive integers \mathbf{x} and \mathbf{y} , design a Turing Machine that computes $(\mathbf{x} + \mathbf{y})$.

$$6 + 6 = 12$$

- 9.(a) Design a Turing Machine M_6 that accepts the following language. $L = \{a^n b^n c^n \mid n > 0\}$
- (b) Is "The halting problem" of Turning machine solvable, or deciable? Explain. 6 + 6 = 12

CSEN 3101

4