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Abstract: There has been significant work on solving Travelling Salesman Problem and its variants using heuristic approach as the algorithms 
for finding exact solutions are computationally hard. Among the heuristics, genetic algorithms have shown promising result in terms simplicity 
in implementation and computational complexity. In this paper, we propose Combined Genetic Algorithm that uses partially mapped crossover 
and exchange mutation to progressively eliminate the weaker solution. Computational performance in our setting has shown quadratic time 
complexity. 
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I. INTRODUCTION 

Travelling Salesman Problem (TSP) is a NP-hard 
optimization problem [1].  In TSP, minimum cost to tour of n 
cities is to be found where the costs to travel between each 
pair of cities are known; the problem has a constraint that 
each city has to be visited exactly once.  It is most intensively 
studied [2] optimization problem and has wide range of 
applications like, tour planning [3], wiring problem in 
computer [4], vehicle routing problem [5] (extension of 
TSP), etc. TSP has many variants [6]: when the cost to travel 
from city i to city j, c(i, j) is same as cost to travel from city j 
to city i, c(j, i), i.e., c(i,j) = c(j,i), then the TSP is called 
symmetric TSP (sTSP); if c(i,j) ≠ c(j, i), then the TSP is 
called asymmetric TSP (aTSP); if there are multiple salesmen 
satisfying that each city is visited exactly once, then the TSP 
becomes multiple TSP (mTSP). If the costs between pair of 
cities represent Euclidean distances between the cities then 
the Euclidean TSP is an NP-Complete problem [7]. Many 
solution approaches has been proposed in literature and these 
approaches can be broadly classified into (Fig. 1) two 
categories: Approaches for Exact solutions [8]-[11] and 
Heuristic approaches [12]-[17]. The approaches for finding 
exact solution tries to find the optimum route; since the 
problem is NP-hard and hence the time complexity of these 
approaches are nearer to O((n-1)!). For example, the time 
complexities for [9] and [10] are proportional to n22n, which 
though much lesser than (n-1)!, it is significantly high for 
moderate values of n. The heuristic approaches find 
approximate solution to TSP, i.e., it finds tour or tours whose 
cost is close to but may be different than the optimum cost. 
All the heuristic approaches initially assume tour(s), called 
approximate solutions, and then improve these approximate 
solutions to get better solution(s); the steps continue until 
there is no improvement in the consecutive approximate 
solution(s) or the number of steps exceeds a predetermined 
value. Among the heuristic approaches, Genetic Algorithm 
[18] (GA) approach has been very effective in solving TSP 
because of its simplicity and it is reported to perform better 
than the other heuristic techniques under linear constraints 

[19]-[22]. For solution using GA, initially a set of tours is 
assumed as solutions, these solutions are termed as 
chromosomes. These chromosomes are then tested for fitness 
using a fitness function, and then the ‘fit’ chromosomes are 
recombined (called crossover), to get next set of 
chromosomes, that is, new chromosomes are created for next 
generation. Often each of these chromosomes may undergo 
self transformation called mutation with Pm

II. COMBINED GA FOR TSP 

 as probability of 
mutation. The formation of generations of chromosomes 
representing solutions is continued until it is found that 
fitness of newly formed generation cannot be improved 
further. The various approaches for TSP using GA can be 
distinguished by the nature of chromosomes, crossover 
methodology and mutation probability [23]. In this paper, we 
propose Combined GA algorithm to solve sTSP, in which we 
provide new technique to produce more fit solutions and 
rejecting the unfit ones, thus reducing the number of steps 
hence reducing the cost of implementation. Rest of the paper 
is organized as follows: section II explains the Combined 
GA; section III discusses the results obtained after 
implementing the proposed algorithm; followed by 
conclusion and references in section IV and V respectively. 

    In this section, we describe the proposed Combined GA 
for solving sTSP, which combines partially mapped 
crossover [24] and exchange mutation [25]. In subsequent 
sub-sections we define the components of the algorithm: (1) 
Solution representation in chromosomes; (2) Initialization, 
i.e., generating chromosomes representing probable 
solutions to the TSP problem; (3) Selection using fitness 
function; (4) Crossover; (5) Mutation and Updating. 

A. Representation and Initialization 
    We represent the chromosomes as tours of the cities 
where each city appears exactly once. Therefore, length of 
each chromosome is equal to the number of cities in the 
TSP. For example, if there are 5 cities number 1 through 5, a 
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chromosome could be (5, 4, 3, 1, 2). We now generate tours 
(chromosomes) for TSP. The generated chromosomes form 
the first generation of population. The population is 

improved by selection using fitness function, crossover and 
mutation. 

 
 

Figure 1. Solution Approaches for Travelling Salesman Problem (TSP) 

B. Selection using Fitness Function 
      The fitness function first finds the path lengths of 
chromosomes of the present generation. The path length of a 
chromosome is the sum of costs between two consecutive 
cities along a chromosome. Then four chromosomes among 
the population is found: chromosome having minimum path 
length (say minLengthC), second minimum path length (say 
secondMinLengthC), maximum path length (say maxLengthC) 
and, second maximum path length (say secondMaxLengthC). 
In case of a tie, one of the chromosomes is chosen arbitrary. 
The chromosomes minLengthC and secondMinLengthC are 
now used for crossover. 

C. Crossover 
     The crossover technique used is the partially mapped 
crossover (PMX). Given two selected (section II.B) 
chromosomes, two crossing points (say position-1 and 
position-2, where position-2 > position-1) which are set to be 
same for both the chromosomes, are chosen. The parts within 
position-1 and position-2 are first swapped between the 
chromosomes creating two children chromosomes. Each child 
has one crossover zone and two non-crossover zones. Now 

these new chromosomes may not represent a feasible tour, i.e., 
it may contain repeated cities. Therefore, each of these two 
children are checked for duplicate cities and modified if 
needed, in two <non-crossover zone, crossover zone> zone-
pairs of a chromosome: if there is duplicate city, one in 
crossed over region and another in non –crossover region, then 
the duplicate city in the non-crossover zone is replaced by a 
city from the other child such that that city is unique to the 
former child. Therefore for the two children, there are four 
checking for duplicate cities. The newly formed feasible 
children may now undergo mutation. 

D. Mutation and Updating 
After PMX (section II.C), one of the children chromosomes is 
selected at random for mutation. Then, two random positions 
within the children chromosome are chosen and the cities from 
those positions are swapped, thus causing mutation. The 
mutated and non-mutated children chromosomes now replace 
the maxLengthC and secondmaxlengthC chromosomes 
(section II.B). This replacement updates the population that 
contains chromosomes with lesser path lengths than the 
previous population. 
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E. Procedure for Combined GA 
The procedure uses the operations explained in section II.A to 
section II.D. The costs between n cities are taken in adjacency 
matrix. Initially, population of N (≤n!) unique chromosomes is 
generated, where length of a chromosome is n. At each 
iteration: population is tested for fitness and two chromosomes 
from the population are selected (section II.B), followed by 
crossover (section II.C) and mutation (section II.D) operations 
on these two chromosomes and the resulting chromosomes 
replace the chromosomes that have highest and second highest 
path lengths. This step eliminates the ‘weaker’ chromosomes 
and creates an improved population for next iteration (or 
generation). Iterations are carried out for pre-determined value 
of number of generations.  

III. RESULTS AND DISCUSSIONS 

We have implemented our algorithm using C programming 
language and run in Dev-C++ IDE supporting GCC 4.9.32 
(32-bit release). The IDE is installed on Windows 8 Pro with 
Intel Pentium G2020 running at 2.90 GHz and 2GB RAM. 
The number of cities is varied from 10 to 200 with the interval 
of 10. The population size (N) and the pre-determined value of 
number of generations are both set to 100. For each value of 
number of cities, the programme is run 1000 times and the 
average of these 1000 CPU times is taken. The time required 
to run the algorithm is measured using clock() function and the 
CLOCKS_PER_SEC macro. The obtained CPU time is given 
in Table 1. It is to be noted that the programme, which 
becomes a process, competes and cooperates with other 
processes of the operating system and we have not used any 
specialized system for our run, nor have we considered the 
process scheduling algorithm of the operating system. The 
variation of average CPU time with number of cities is shown 
in Fig. 2. From the figure and its regression line, we can say 
that our algorithm has quadratic time complexity which is an 
agreement with [5] and significant improvement over [26] 
where Integer Linear Programming is used to solve the sTSP. 

Table I.  CPU Times for the Implementation 

Number of Cities Average CPU Time 
10 0.000718 
20 0.001422 
30 0.002314 
40 0.003437 
50 0.004349 
60 0.005985 
70 0.007079 
80 0.009125 
90 0.010531 
100 0.012593 
110 0.014656 
120 0.017470 
130 0.020001 
140 0.022345 
150 0.025220 
160 0.029155 
170 0.031439 
180 0.034893 
190 0.038329 
200 0.042409 

IV. CONCLUSION 

       We have proposed a Combined Genetic Algorithm for 
solution of symmetric Travelling Salesman Problem, where 

we have used a multi-point crossover scheme- partially 
mapped crossover and exchange mutation. The algorithm 
progressively removes the less fit chromosomes, i.e., the tours 
with high path lengths are removed. The performance of the 
algorithm is quadratic proving superiority of heuristic schemes 
over the exact algorithms. 

 
 
 

 
 

 
Figure 2. CPU time variation with number of cities for Combined GA 
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