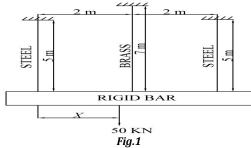
B.TECH/CE/3RD SEM/CIVL 2102/2017

(viii) What is the Eul	er's buckling load of	a cantilever column	of length 5.0 m,	
modulus of elasticity 2×10^5 N/mm ² and moment of inertia 5×10^4 mm ⁴ ?				
(a) 1.0 kN	(b) 2.0 kN	(c) 3.0 kN	(d) 4.0 kN.	

(ix) What is the effective length of a propped cantilever column of clear length '*l*'?


(a) 0.8 l (b) 1.0 l (c) 2.0 l (d) 0.65 l.

- (x) What is the shear stress acting on the principal plane?(a) Zero
 - (b) Half of the major principal stress
 - (c) Twice of the major principal stress

(d) Equal with the applied stress.

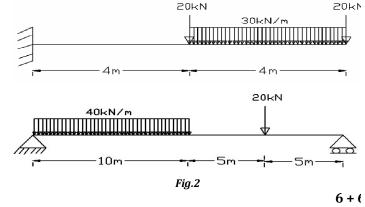
Group – B

2. (a) A rigid bar as shown in the fig. 1 below is suspended by three vertical rods in a horizontal position. The cross sectional area of brass bar is 10 mm^2 and modulus of elasticity is 1×10^5 MPa. The steel bars have cross sectional area 5 mm² and modulus of elasticity is 2×10^5 MPa. Find out stresses in these bars and the distance 'X' where the 50 kN load may be applied by keeping the bar horizontal.

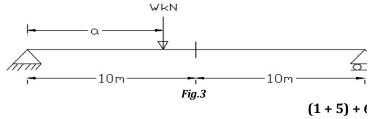
(b) What is proof stress? Describe with a neat sketch.

9 + 3 = 12

6 + 6 = 12

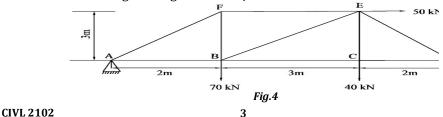

- 3. (a) An element is subjected to pure shear where the shear stress is 50 N/mm². Draw a Mohr Circle for the element to identify the principal plane and major and minor principal stresses. What will be the major principal stress if the element is rotated by 10° clockwise?
 - (b) A thin walled balloon having diameters 25 mm and 35 mm along the horizontal and vertical directions, respectively and wall thickness 5 mm is subjected to internal pressure 5 kg/mm². Find out the meridonial and hoop stresses if the hoop stress is twice the meridonial stress.

CIVL 2102

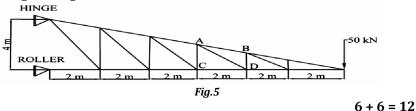

B.TECH/CE/3RD SEM/CIVL 2102/2017

Group – C

4. (a) Draw the SFD and BMD of the following beams as shown in fig. 2.

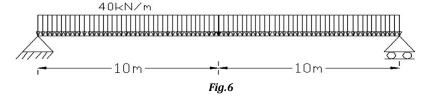


- 5. (a) Write down the assumptions in theory of simple bending. Derive expression for distribution of shear stress diagram over a rectain section of width *b* and depth *d*.
 - (b) A wooden beam 150 mm × 250 mm is simply supported as shown fig. 3. When a concentrated load *W* is placed at a distance '*a*' from t support, maximum bending stress developed is 11.2 N/mm maximum shear stress developed is 0.7 N/mm². Determine '*W*' and '



6. (a) Find out the axial forces in members EC, BE, EF and DE of the tr shown in fig. 4 using Method of Joints.

B.TECH/CE/3RD SEM/CIVL 2102/2017


(b) Find out the axial forces in members AB, CD and AD of the truss shown in fig. 5 using Method of Sections.

7. A solid circular shaft of length 3.0 m and diameter 25 mm is fixed at one end and free at the other end. The first 1.5 m length of the shaft is made of steel and the second 1.5 m length is made of brass. Maximum allowable shear stresses are 85 MPa and 40 MPa for steel and brass, respectively. The modulus of rigidity are 2×10^5 MPa and 1.2×10^5 MPa for steel and brass, respectively. Find out the maximum allowable torque acting at the free end of that shaft if its angle of twist is restricted upto 1°.

Group – E

8. (a) A simply supported beam of span 20 m carries an udl of 40kN/m throughout as shown in fig. 6. Find slope at the two ends and deflection at the midpoint. Use double integration method. (Given $E = 200 \text{ kN/mm}^2$ and $I = 1.25 \times 10^9 \text{ mm}^4$.)

(b) Derive the expression for strain energy stored in a bar due to axial force and in a beam due to shear force.

8 + (2 + 2) = 12

12

- 9. (a) Find out the first three bucking loads of a cantilever column using Euler's theory. The column has length '*l*', uniform cross-sectional area 'A' and rigidity 'EI'.
 - (b) Find out the core of a circular column of diameter '*D*'.

9 + 3 = 12

CIVL 2102

4

B.TECH/CE/3RD SEM/CIVL 2102/2017

STRENGTH OF MATERIALS (CIVL 2102)

Time Allotted : 3 hrs

Full Mark

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practice

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: 10×1
 - (i) Wherever the bending moment is maximum the shear force is
 (a) zero
 (b) also maximum
 (c) minimum
 (d) does not depend on bendingm
 - (ii) Maximum deflection of a cantilever beam with a point load P free end is
 (a) Pl³/3EI
 (b) 5Pl³/384EI
 (c) Pl³/48EI
 (d) 5Pl³/48EI.
 - (iii) Section modulus of a rectangular section having width *b* and dep given by
 (a) bd²/6
 (b) bd³/8
 (c) bd/6
 (d) t
 - (iv) When a rectangular section of a beam is subjected to a shearing the ratio of maximum shear stress to the average shear stress is (a) 2.0 (b) 1.75 (c) 1.5 (d)
 - (v) The relation governing the simple bending of beam is (a) $\sigma/y = M/E = I/R$ (b) $\sigma/y = M/R = E/I$ (c) $\sigma/E = M/I = y/R$ (d) $\sigma/y = M/I = E/R$.
 - (vi) What is the elongation of a bar hanging freely from the top unc own self weight (a) $\delta l^2/2E$ (b) $\delta l^2/2G$ (c) $\delta l^2/3E$ (d) δ
 - (vii) A solid circular bar of 20 mm diameter is subjected to torsion. permissible shear stress for the material is 120 N/mm², find o allowable twisting moment on that shaft.

(a) 0.188 kNm		(b) 1.883 kNm
(c) 0.253 kNm		(d) 0.318 kNm.
CIVL 2102	1	