B.TECH/CHE/5TH SEM/CHEN 3102/2017

CHEMICAL REACTION ENGINEERING (CHEN 3102)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
 - (i) For the reaction NO + $\frac{1}{2}$ O₂ = NO₂ carried out in presence of Pt-Rh catalyst, the reaction:
 - (a) is considered as homogeneous
 - (b) is considered as heterogeneous
 - (c) may be either homogeneous or heterogeneous
 - (d) none of the above.
 - (ii) The units of frequency factor in Arrhenius equation
 - (a) is same as that of the rate constant
 - (b) is different from the units of the rate constant
 - (c) is unitless
 - (d) none of the above.
 - (iii) From the Arrhenius law the frequency factor
 - (a) does affect the temperature sensitivity of a reaction
 - (b) does not affect the temperature sensitivity of a reaction
 - (c) is dimensionless
 - (d) is a measure of activation energy.
 - (iv) For a reaction having order (n) greater than unity, the best combination of reactors will be
 - (a) PFR, small mixed, large mixed
 - (b) large mixed, small mixed, PFR
 - (c) small mixed, large mixed, PFR
 - (d) small mixed, PFR, large mixed.
 - (v) The order of a Chemical Reaction corresponds to Molecularity for

 (a) non elementary reaction
 (b) elementary reaction
 (c) enzyme catalyzed reaction
 (d) isothermal reactions.

B.TECH/CHE/5TH SEM/CHEN 3102/2017

- (vi) 1 liter/sec of gaseous reactant A is introduced into a mixed flow reactor having volume 4 liters. The stoichiometry is $A \rightarrow 3R$. The conversion is 50%. Under these conditions the residence time is (a) 1 sec (b) 2 sec (c) $\frac{1}{2}$ sec (d) none of the above.
- (vii) If the desired product is in the sequence of a series reaction the best product distribution is obtained in

 (a) mixed flow reactor
 (b) plug flow reactor
 (c) either plug flow reactor or batch reactor
 (d) none of the above.
- (viii) Maximum Mixedness model is a
 (a) zero parameter model
 (b) one parameter model
 (c) two parameter model
 (d) multi parameter model.
- (ix) The fractional volume change of the system between no conversion and complete conversion for the isothermal gas phase reaction, $A \rightarrow 3B$ with 50% A and 50%, inert initially present is (a) 2 (b) 1 (c) 0.5 (d) 0.
- (x) For reaction under pore diffusion regime, the reaction rate
 - (a) varies directly with catalyst particle size
 - (b) varies inversely with catalyst particle size
 - (c) is independent of catalyst particle size
 - (d) none of the above.

Group – B

2. Under the influence of oxidizing agents hypophosphorous acid is transferred into phosphorous acid: $H_3PO_2 \rightarrow H_3PO_3$

The kinetics of this transformation present the following features. At low concentration of oxidizing agent $r_{H_3PO_3} = k[\text{oxidizing agent}] [H_3PO_2]$

At high concentration of oxidizing agent $r_{H_3PO_3} = k/[H^+] [H_3PO_2]$

To explain the observed kinetics, it has been postulated that with hydrogen ion as catalyst normal unreactive H_3PO_2 is transferred into an active form, the nature of which is unknown. This intermediate then reacts with the oxidizing agent to give H_3PO_3 . Show that this scheme does explain the observed kinetics.

12

- 3. (a) Milk is pasteurized if it is heated to 63°C for 30 min, but if it is heated to 74°C it only needs 15 s for the same result. Find the activation energy of this sterilization process.
 - (b) Prove that for a 2nd order irreversible bimolecular reaction, A + 2B \rightarrow Products ln $\frac{M-2X_A}{M(1-X_A)} = C_{A0}(M-2)$ kt where, M = C_{B0}/C_{A0} & M # 2 (Symbols stand for usual notations)

2

B.TECH/CHE/5TH SEM/CHEN 3102/2017

6 + 6 = 12

Group – C

- 4. (a) For the Diels Alder reactions of benzoquinone (B) and cyclopentane (C) at 25°C B + C = adduct, $(-r_c) = k C_B C_c$, volume changes on reaction may be neglected. At 25°C, the reaction rate constant is equal to 9.92 × 10⁻³ m³/kmol.s. If one employs a well stirred isothermal batch reactor to carry out this reaction, determine holding time necessary to achieve 95% conversion of the limiting regeant using initial concentration of 0.1 and 0.08 kmol/m³ for B and C respectively.
 - (b) The elementary liquid-phase reaction

$A + 2B \rightleftharpoons R$

with rate equation - $r_A = -\frac{1}{2} r_B = (12.5 \text{ liter}^2/\text{mo1}^2 \text{ min})C_A C_B^2 - (1.5 \text{ min}^-1) C_R$, mol/lit.min is to take place in a 6-liter steady-state mixed flow reactor. Two feed streams, one containing 2.8 mol A/liter and the other containing 1.6 mol B/liter, are to be introduced at equal volumetric flow rates into the reactor, and 75% conversion of limiting component is desired. What should be the flow rate of each stream? Assume a constant density throughout.

5. (a) The data in table below have been obtained on the decomposition of gaseous reactant A in a constant volume batch reactor at 100°C. The stoichiometry of the reaction is $2A \rightarrow R + S$. What size plug flow reactor (in liters) operating at 100°C and 1 atm can treat 100 mol A/hr in a feed consisting of 20% inerts to obtain 95% conversion of A?

		0									
t,sec	0	20	40	60	80	100	140	200	260	330	420
p _A , atm	1.00	0.80	0.68	0.56	0.45	0.37	0.25	0.14	0.08	0.04	0.02

(b) The kinetics of the aqueous-phase decomposition of A is investigated in two mixed flow reactors in series, the second having twice the volume of the first reactor. At steady state with a feed concentration of 1 mol A/liter and mean residence time of 96 sec in the first reactor, the concentration in the first reactor is 0.5 rnol A/liter and in the second is 0.25 rnol A/liter. Find the kinetic equation for the decomposition.

6 + 6 = 12

6 + 6 = 12

Group – D

6. (a) Kinetic experiments on the solid catalyzed reaction $A \rightarrow 3R$ are conducted at 8 atm and 700°C in a basket type mixed reactor 960 cm³ in volume and containing 1 gm of catalyst of diameter d, = 3 mm. Feed consisting of pure A is introduced at various rates into the reactor and

the partial pressure of A in the exit stream is measured for each feed rate. The results are as follows:

Feed rate, liter/hr	100	22	4	1	0.6
$P_{Aout/}/p_{ain}$	0.8	0.5	0.2	0.1	0.05
1	1			. 1	

Find a rate equation to represent the rate of reaction on catalyst of this size.

- (b) Prove that an nth order chemical reaction will behave as $\frac{n+1}{2}th$ order reaction under strong pore diffusion control regime.
- (c) The following kinetic data on the reaction $A \rightarrow R$ are obtained in an experimental packed bed reactor using various amounts of catalyst and a fixed feed rate $F_{A0} = 10$ kmol / hr.

W, kg cat	1	2	3	4	5	6	7
X _A	0.12	0.20	0.27	0.33	0.37	0.41	0.44

How much catalyst would be needed if the reactor employed is a mixed flow reactor for 40% conversion and a feed rate of 400 kmol/hr?

7. (a) The stoichiometry of a liquid-phase decomposition is known to be

In a series of steady-state flow experiments ($C_{A0} = 100$, $C_{R0} = C_{S0} = 0$) in a laboratory mixed flow reactor the following results are obtained:

CA	90	80	70	60	50	40	30	20	10	0
C_R	7	13	18	22	25	27	28	28	27	25

Further experiments indicate that the level of C_R and C_S have no effect on the progress of the reaction. With $C_{A0} = 200$ and $C_{Af} = 20$ find C_R at the exit from a plug flow reactor.

(b) For the elementary reactions

A
$$\xrightarrow{k_1} R \xrightarrow{k_2} S$$
, $k_2 = k_1 + k_3$
 $k_3 \xrightarrow{T}$
Find C_{Rmax} / C_{A0} and τ_{out} in a mixed flow reactor.

7 + 5 = 12

Group - E

8. (a) Determine mean conversion in a PFR following Segregation model.

4

B.TECH/CHE/5TH SEM/CHEN 3102/2017

(b) Show for a One parameter Tank-in Series (RTD) model, the variance decreases as the number of tanks increases.

6 + 6 = 12

9. The first-order reaction $A \rightarrow B$ is carried out in a 10 cm diameter tubular reactor 6.36 m in length. The specific reaction rate is 0.25 min⁻¹. The results of a tracer test carried out on this reactor are shown below:

t (min)	0	1	2	3	4	5	6	7	8	9	10	12	14
C (g/m ³)	0	1	5	8	10	8	6	4	3.0	2.2	1.5	0.6	0

Calculate conversion using the tanks-in-series model.

12