B.TECH/CHE/3RD SEM/CHEN 2102/2017

FLUID MECHANICS (CHEN 2102)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and

<u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.				
Candidates are required to give answer in their own words as far as practicable.				
Group – A (Multiple Choice Type Questions)				
Choose the correct alternative for the following			llowing:	$10 \times 1 = 10$
(i)	A Newtonian fluid (density = ρ , viscosity = μ) is flowing with an average velocity ν in a tube of diameter 'D'. Let Δp be the pressure drop across the length 'L'. For laminar flow, Δp is proportional to (a) L ρ ν^2/D (b) L μ ν/D^2 (c) μ ν/L (d) D ρ ν^2/L .			
(ii)	A streamline is a line in flow field, (a) along which a fluid particle travels (b) such that at every point on it, the velocity is tangential to it (c) that is traced by all the fluid particles passing through a given point (d) none of these.			
(iii)	Sewage sludge is an example of (a) Newtonian (c) Bingham plastic		fluid. (b) Pseudoplastic (d) Dilatant.	
(iv)	For uniform laminar flow (in the x-direction) past a flat plate at high Reynold's number, the local boundary layer thickness (δ) varies with the distance along the plate (x) as (a) $\delta \alpha x^{\frac{1}{4}}$ (b) $\delta \alpha x^{\frac{1}{3}}$ (c) $\delta \alpha x^{\frac{1}{2}}$ (d) $\delta \alpha x$			
	(a) $\delta \alpha x^4$	(b) $\delta \alpha x^3$	(c) $\delta \alpha x^2$	(d)) $\delta \alpha x$
(v)	is an example of dilatant fluid (a) paper pulp (b) milk (c) tooth paste (d) butter.			
(vi)	The equivalent diameter for fluid flow through a square cross-section channel of side x is given by			
	(a) 4x	(b) 2x	(c) x	(d) 0.5x.

1

B.TECH/CHE/3RD SEM/CHEN 2102/2017

- (vii) Pitot tube measures
 - (a) point velocity

(b) average velocity

(c) bulk velocity

- (d) maximum velocity.
- (viii) In case of an open channel super-critical flow, Froude number (F_r) is (a) < 1(b) 0 (c) = 1(d)) > 1.
- (ix) During free fall of an object through a fluid medium, the terminal velocity becomes
 - (a) accelerating

(b) decelerating

(c) zero

(d) constant.

The particle Reynolds number (Re_n) for a critical flow of fluid in a fluidised bed condition is

(a)
$$Re_p < 10$$

(b) $2000 < \text{Re}_p > 10$

(c)
$$Re_p > 2000$$

(d) $2000 < Re_p < 4000$.

Group - B

- A velocity field is given by $V = 0.3 \times i 0.3 \times j$.
 - (i) Find the streamline passing through the point (2, 8, 0)
 - (ii) If the particle passes through the point (2, 8, 0) at time $t_0 = 0$, determine the location and velocity of the particle at time t = 6 sec.
 - For fluid flow in a smooth circular tube with radius, R, at a Reynolds number of about 105, the velocity profile varies according to:

$$V = V_{\text{max}} \left(\frac{R - r}{R}\right)^{1/7}$$

where r is the radial distance from the centre and V_{max} , the maximum velocity at the centre. Find out the relationship between average velocity V_{avg} and V_{max} for an incompressible fluid.

(3+3)+6=12

3. (a) Define streak line.

The velocity components in a flow field are given as follows: u = x(1 + 2t). v = v and w = 0. A coloured dye is injected at the point A (1, 1) in the flow field at t = 0. Find the equation of streak line passing through the point A at t = 1.

A manometer is used to measure the pressure drop across an orifice. The manometric liquid is mercury (density 13,590 kg/m³). The fluid flowing through the orifice and filling the manometer leads is brine (density 1,260 kg/m³). When the pressure at the taps are equal, the level of the mercury in the manometer is 0.92 m below the orifice taps. Under the operating conditions, the gauge pressure at the upstream

1.

CHEN 2102

tap is 0.135 bar; the pressure at the downstream tap is 240 mm Hg below atmospheric. What is the reading of the manometer in cm?

$$(2+4)+6=12$$

Group - C

4. (a) A kerosene storage tank drains by gravity to a tank truck. The length of the pipeline between the tank and truck is 61 m and its internal diameter is 25 mm. Kerosene has a viscosity of 0.0005 Pa s and a density of 800 kg/m³. Both tank and truck are open to the atmosphere, and the flow rate is 0.81 lit./s. Calculate the difference between the level in the tank and that in the truck.

(Given: $f = 0.079 \text{Re}^{-0.25}$, where f is friction factor.)

- (b) Define 'momentum correction factor'.
- (c) Derive an expression of the velocity profile in case of Coutte flow with pressure gradient.

$$7 + 1 + 4 = 12$$

- 5. (a) A Newtonian fluid is confined between two broad, parallel, vertical plates separated by a distance B. The plate on left is stationary, that on right is moving vertically upward with a constant velocity u₀. Assuming that the flow is laminar, find the steady-state velocity profile in the fluid.
 - (b) Obtain an expression of frictional head loss due to sudden expansion of cross section for a fluid flowing through a conduit in turbulent condition.
 - (c) A nozzle of cross-sectional area A_2 is discharging to the atmosphere and is located at the side of a large tank, in which the open surface of the liquid in the tank is H metre above the centreline of the nozzle. Calculate the velocity v_2 at the outlet of the nozzle and the volumetric rate of discharge if no frictional losses are assumed.

$$5 + 3 + 4 = 12$$

Group - D

- 6. (a) Derive an expression for the volumetric flow rate of a fluid flowing through an orifice meter.
 - (b) Explain that pressure drop due to fluid flow through a rotameter is invariant.
 - (c) Consider the saline drip bottle shown in the following figure. If ρ is the density of saline, find (i) pressure at A (ii) the velocity of flow of saline through the tube.

B.TECH/CHE/3RD SEM/CHEN 2102/2017

(Neglect the viscous losses in the tube. Atmospheric pressure is $P_{\text{atm.}}\!)$

4 + 4 + 4 = 12

- 7. (a) What is "Drag Coefficient"?
 - (b) Explain the term Stokes flow and terminal velocity.
 - (c) Show that the terminal velocity of a spherical particle with Stokes flow is given by the expression $\frac{d^2 g (\rho_s \rho_f)}{18 \mu}$. Also, show that $C_d = \frac{24}{Re}$ for drag coefficient in a fluid flow past a sphere where, C_d stands for drag coefficient, R_e is Reynolds number, d is the diameter of the pipe, ρ_s is the density of the solid, ρ_f is the density of the fluid & μ is the viscosity of the fluid.

$$2 + 4 + 6 = 12$$

Group - E

- 8. (a) Explain with neat sketches the working of a centrifugal pump. What are the merits and demerits of such a pump?
 - (b) Plot a graph to explain the characteristics of a centrifugal pump.
 - (c) The rotor of a centrifugal pump is 170 mm diameter and runs at 1450 rev/min. It is 15 mm deep at the outer edge and swept back at 30° . The inlet flow is radial. The vanes take up 10% of the outlet area. 65% of the outlet velocity head is lost in the volute chamber. The pump delivers $15 \text{ dm}^3/\text{s}$ of water. Calculate: the head produced; the efficiency and power consumed.

$$5 + 2 + 5 = 12$$

- 9. (a) Derive an expression for minimum fluidization velocity. Also give its physical significance.
 - (b) The report of observations made by an engineer in the plant for the fluidisation operation is as follows: Data: Air: Density of the gas $\rho_g = 1.2 \times 10^{-3} \text{ g/cm}^3$, Viscosity of the gas $\mu = 1.8 \times 10^{-4} \text{ g/cm}$. s; Sand: $\overline{d_p} = 160 \ \mu m$, $\varphi_s = 0.67$, $\rho_s = 2.60 \ \text{g/cm}^3$. Calculate minimum fluidisation velocity (u_t) for sharp irregular sand particles used by the engineer for the fluidisation operation in the plant.

6 + 6 = 12

3 CHEN 2102 4