Performance Evaluation of Free Vibration of Laminated Composite Stiffened Hyperbolic Paraboloid Shell Panel with Cutout

Sarmila Sahoo

Department of Civil Engineering, Heritage Institute of Technology, Kolkata 700107, India E-mail: sarmila.sahoo@gmail.com, sarmila_ju@yahoo.com

Keywords: laminated composites; hyperbolic paraboloid shell panel; cutout; stiffener; free vibration; finite element.

Abstract. The paper considers free vibration characteristics of stiffened composite hyperbolic paraboloid shell panel with cutout in terms of natural frequency and mode shapes. A finite element code is developed for the purpose by combining an eight noded curved shell element with a three noded curved beam element. The size of the cutouts and their positions with respect to the shell centre are varied for different edge conditions of cross-ply and angle-ply laminated shells. The effects of these parametric variations on the fundamental frequencies and mode shapes are considered in details to conclude a set of inferences of practical engineering significance.

Notations

a ,b	length and width of shell in plan
a',b'	length and width of cutout in plan
b_{st}	width of stiffener in general
$b_{\rm sr.} b_{\rm sv}$	width of x and y stiffeners respectively
$B_{\rm ST}, B_{\rm SV}$	strain displacement matrix of stiffener elements
d_{st}	depth of stiffener in general
d_{sx}, d_{sv}	depth of x and y stiffeners respectively
$\{d_e\}$	element displacement
e_{sx}, e_{sv}	eccentricities of x and y -stiffeners with respect to shell mid-surface respectively
E_{11}, E_{22}	elastic moduli
G_{12}, G_{13}, G_{23}	shear moduli of a lamina with respect to 1, 2 and 3 axes of fibre
h	shell thickness
M_{x}, M_{y}	moment resultants
M_{xy}	torsion resultant
np	number of plies in a laminate
N_1 - N_8	shape functions
N_x , N_y	inplane force resultants
N_{xy}	inplane shear resultant
Q_{x}, Q_{y}	transverse shear resultant
R_{xx} , R_{yy} , R_{xy}	radii of curvature and cross curvature of shell respectively
<i>u, v, w</i>	translational degrees of freedom
<i>x</i> , <i>y</i> , <i>z</i>	local co-ordinate axes
X, Y, Z	global co-ordinate axes
$\mathbf{Z}_{\mathbf{k}}$	distance of bottom of the kth ply from mid-surface of a laminate
α,β	rotational degrees of freedom
$\varepsilon_x, \varepsilon_y$	inplane strain component
γ _{xy} ,γ _{xz} , γ _{yz}	shearing strain components
V12, V21	Poisson's ratios
ξ, η, τ	isoparametric co-ordinates
ρ	density of material

SciPress applies the CC-BY 4.0 license to works we publish: https://creativecommons.org/licenses/by/4.0/