B.TECH/ME/4TH SEM/MATH 2001/2017

- 9. (a) Find the general solution of the following partial differential equation $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - 6 \frac{\partial^2 z}{\partial y^2} = \cos(2x + y)$
 - (b) Solve the following partial differential equation $z(xp yq) = y^2 x^2$ 6 + 6 = 12

B.TECH/ME/4TH SEM/MATH 2001/2017

MATHEMATICAL METHODS (MATH 2001)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following: $10 \times 1 = 10$

(i) The value of
$$f(3)$$
, where $f(a) = 2 \int_{C} \frac{2z^2 - z - 2}{(z - a)} dz$, $C : |z| = 2.5$ is
(a) 0 (b) 1 (c) πi (d) -1.

- (ii) If the function f(z) is not analytic at z = 0, then z = 0 is called
 (a) an ordinary point of f(z)
 (b) a singular point of f(z)
 (c) zero of f(z)
 (d) none of these.
- (iii) If F(s) is the Fourier Transform of f(x), $a \neq 0$ then $F\{f(ax)\}$ is (a) $\frac{1}{a}F(s/a)$ (b) $-\frac{1}{a}F(s/a)$ (c) $\frac{1}{|a|}F(s/a)$ (d) $-\frac{1}{|a|}F(Sa)$
- (iv) If the function $f(x) = x, -\pi < x < \pi$ is represented by a Fourier series as $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$, then $a_n =$ (a) 0 (b) 1 (c) 2 (d) ¹/₂.
- (v) The residue of $\frac{z^2}{z^2 + a^2}$ at z = ia is (a) $-\frac{1}{2}ia$ (b) $\frac{1}{2}ia$ (c) ia (d) a

1

4

B.TECH/ME/4TH SEM/MATH 2001/2017

(vi) The solution of the differential equation
$$(1 - x^2)y'' - 2xy' + 12y = 0$$
 is
(a) $P_n(x)$ (b) $P_1(x)$ (c) $P_2(x)$ (d) $P_3(x)$
(vii) $J_{\frac{1}{2}}(x)$ is given by
(a) $\sqrt{\frac{2\pi}{x}} \sin x$ (b) $\sqrt{\frac{2\pi}{x}} \cos x$ (c) $\sqrt{\frac{\pi}{2x}} \cos x$ (d) $\sqrt{\frac{2}{\pi x}} \sin x$
(viii) P. I. of $(D^2 + 4DD' - 5D'^2) = \sin(2x + 3y)$ is
(a) $2\sin(2x + 3y)$ (b) $\frac{3}{4}\sin(3x + 2y)$
(c) $\frac{1}{17}\sin(2x + 3y)$ (d) $\sin(2x + 3y)$
(ix) The solution of the p. d. e p - q = 1 is
(a) $z = ax + (1 - a)y$ (b) $z = ax$
(c) $z = ax + (a - 1)x + c$ (d) $z = c$
(x) The Fourier series of an even function contains only

x) The Fourier series of an even function contains only(a) cosine terms(b) sine terms(c) sine and cosine terms(d) none of these.

Group - B

2. (a) Use the definition of limit to prove that
$$L_{z \to 1-i} \{z + i(z + \overline{z})\} = 1 + i$$
.

- (b) Determine whether the function $v = -e^{-x} \sin y$ is harmonic. If harmonic, then find the analytic function f(z) = u + iv in terms of z. 6 + 6 = 12
- 3. (a) State Cauchy's Integral formula and if $f(z) = 5z^2 4z + 3$, then show that $\int_{\tau} \frac{f(z)}{z+3i} dz = -\pi(24 + 84i)$, where τ is the ellipse $16x^2 + 9y^2 = 144$.

(b) Use Residue theorem to evaluate
$$\int_{|z|=\frac{1}{2}} \frac{(z+1)}{z^3-2z^2} dz$$

6 + 6 = 12

Group – C

4. (a) Find the Fourier series expansion of $f(x) = x + x^2$ on $[-\pi, \pi]$. Hence, deduce that

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$$

MATH 2001

2

B.TECH/ME/4TH SEM/MATH 2001/2017

(b) Find the Fourier sine transform of the function $e^{-|x|}$. Hence prove that $\int_0^\infty \frac{x \sin}{(1+x^2)} dx = \frac{\pi}{2} e^{-m}$, m > 0. **6 + 6 = 12**

5. (a) Find the Fourier transform of
$$f(t)$$
 defined by

$$f(t) = \begin{cases} e^{-at} & for \ t > 0 & (a > 0) \\ 0 & for \ t < 0 \end{cases}$$
If $F\{h(t)\} = \frac{1}{(1-is)^2}$ and $h(t) = 0$ for $t < 0$, find $h(t)$ using convolution theorem.

(b) Find the Fourier inverse transform of the function $F(s) = \frac{1}{s^2+4s+13}$. 7 + 5 = 12

Group – D

6. (a) Solve in series
$$(1 - x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + 4y = 0$$
 about the point $x = 0$.
(b) Show that $J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}}\cos x$.
 $7 + 5 = 12$

- 7. (a) Solve by Frobenius method: $2x^2y'' + xy' (x+1)y = 0$.
 - (b) Prove the following recursion relation for Bessel's function using generating function $xJ_{n}'(x) = -nJ_{n}(x) + xJ_{n-1}(x)$ 8 + 4 = 12

Group – E

8. (a) Solve
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - 6 \frac{\partial^2 z}{\partial y^2} = y \cos x$$

(b) Form the partial differential equations (by eliminating the arbitrary functions) from $f(x^2 + y^2, z - xy) = 0$.

6 + 6 = 12

3