B.TECH/IT/4TH SEM/MATH 2203/2017

GRAPH THEORY AND ALGEBRAIC STRUCTURES (MATH 2203)

Time Allotted : 3 hrs

1.

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

Choo	ose the correct altern	10 × 1 = 10		
(i)	The chromatic poly (a) $\lambda(\lambda - 1)(\lambda - 2)$ (c) $\lambda(\lambda - 1)$		(b) $\lambda(\lambda + 1)$ (d) $\lambda(\lambda - 1)^2$	
(ii)	A triangle is a plana (a) 0	r graph and has region (b) 2	s (c) 4	(d)1.
(iii)	A group contains 12 a subgroup is	2 elements then the po	ssible number	of elements in
	(a) 3	(b) 5	(c) 7	(d) 11.
(iv)	In the group {1, −1, (a) 0	<i>i</i> ,− <i>i</i> } under multiplica (b) 2	tion, order of - (c) 4	- <i>i</i> is (d) -4.
(v)	The number of elen (a) 5 (c) 120	nents in the symmetric	group S ₅ is (b) 20 (d) 5 ⁵ .	
(vi)	Let G be a cyclic grou (a) x (c) identity	p containing 10 element	s with generato (b) x ⁻¹ (d) x ⁹ .	or x. Then x ¹⁰ is
(vii)	The left and right co (a) H is finite (c) G is finite	osets of a subgroup H ir	a group G are (b) G is abeli (d) none of t	an

1

B.TECH/IT/4TH SEM/MATH 2203/2017

(viii) $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$	$\binom{3}{3}\binom{1}{3}\binom{1}{3}\binom{2}{1}\binom{3}{1}\binom{3}{2} =$	
(a) $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix}$	$(b)\begin{pmatrix}1&2&3\\1&2&3\end{pmatrix}$
(c) $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 2 & 3 \\ 3 & 1 \end{pmatrix}$	(d) none of these.

- (ix) Travelling Salesman problem is associated with
 (a) Euler's Circuit
 (b) Hamiltonian Circuit
 (c) Regular Graph
 (d) Isomorphic Graph.
- (x) If the set of residue class modulo n is an integral domain then n is
 (a) an odd integer
 (b) an even integer
 (c) 1
 (d) a prime integer.

Group – B

- 2. (a) Define chromatic polynomial of a graph. Find the chromatic polynomial for a complete graph with n vertices.
 - (b) (i) Show that $x^5 3x^4 + 3x^3 x^2$ is not a chromatic polynomial of a tree.

(ii) Find the chromatic polynomial of K_{1,n}.

(2+5) + (3+2) = 12

- 3. (a) State and prove Euler's formula.
 - (b) What is the maximum number of edges in a planar graph with 10 vertices?
 - (c) If a graph has 250 faces and 300 edges, can it be planar?

6 + 3 + 3 = 12

Group – C

- 4. (a) Let S be a set having n elements. How many different binary operations can be defined on S?
 - (b) (i) Let $G = \{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} | a \in \mathbb{R} \{0\} \}$. Determine whether <G, *> is a group or not, where * is the usual matrix multiplication.
 - (ii) If G is a group such that $a^2 = e$ for every $a \in G$, show that G is abelian.

4 + (4 + 4) = 12

B.TECH/IT/4TH SEM/MATH 2203/2017

- 5. (a) Let $A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 2 \end{pmatrix}$ be two permutations. Show that $AB \neq BA$.
 - (b) Find the order of the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix}$.
 - (c) Show that the set G of all ordered pairs (a, b) with a ≠ 0, of real numbers a, b forms a group with operation '°' defined by, (a, b) ° (c, d) = (ac, bc + d)
 4 + 2 + 6 = 12

Group – D

- 6. (a) Prove that every subgroup of a cyclic group is cyclic.
 - (b) Let *G* be a group. If $a, b \in G$ such that $a^4 = e$, the identity element of *G* and $ab = ba^2$, prove that a = e.

6 + 6 = 12

- 7. (a) A subgroup H of a group G is normal if and only if $gHg^{-1} = H$ for all $g \in G$.
 - (b) Prove that every cyclic group is abelian. Is the converse true? Justify your answer.

6 + (3 + 3) = 12

Group – E

- 8. (a) (i) Show that the ring of matrices $S = \{ \begin{pmatrix} 2a & 0 \\ 0 & 2b \end{pmatrix} | a, b \in \mathbb{Z} \}$ contains divisors of zero and does not contain the unity.
 - (ii) Prove that $\mathbb{Z}[x]$, the ring of all polynomials with integer coefficients, is an integral domain.
 - (b) Prove that the ring of matrices $R = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} | a, b \in \mathbb{R} \right\}$ is a field. (4 + 3) + 5 = 12
- 9. (a) Define characteristic of a ring *R*. Let *R* be a commutative ring with unity of characteristic 4. Compute and simplify $(a+b)^4$ for a,b in *R*.
 - (b) Define divisors of zero in a ring *R*.
 - (c) Solve the equation $x^2 + 2x + 4 = 0$ in Z_6 .

MATH 2203

2

MATH 2203