B.TECH/IT/4TH SEM/INFO 2203/2017

- (vii) In minimal polynomial, _____ degree polynomial is present with coefficients in the base field along with the zeros in extension field.
 (a) largest
 (b) constant
 (c) smallest
 (d) unpredictable.
- (viii) The Hamming distance between 1100001011 and 1001101001 is (a) 1 (b) 5 (c) 4 (d) 3.
- (ix) The minimum distance (d_{min}) of a code is 5. How many errors can it correct?
 - (a) 1 (b) 2 (c) 4 (d) 3.
- (x) A (7, 4) linear block code has a rate of (a) 7 (b) 1.75 (c) 4 (d) .57.

Group – B

- 2. (a) A Memory less source emits six messages with probabilities {0.4, 0.2, 0.2, 0.1, 0.1}. Find the Shannon Fano Elias code and determine efficiency and redundancy of the code.
 - (b) Prove that H(X, Y) = H(X|Y) + H(Y).
 - (c) State the Shannon's third theorem.

$$6 + 4 + 2 = 12$$

3. (a) Apply the Huffman coding for a DMS with the following source symbols and the given occurrence probabilities:

X	X1	X ₂	X ₃	X4	X5	X ₆	X ₇
P(x _i)	0.4	0.2	0.12	0.08	0.08	0.06	0.06

(i) Draw the Huffman tree.

(ii) Calculate its efficiency.

- (b) Consider a binary memoryless source X with two symbols X_1 and X_2 . Prove that entropy of the source H(X) is maximum when both X_1 and X_2 are equiprobable.
- (c) Show that I (X;Y) = I(Y;X) , where I() represents mutual information. (4 + 2) + 3 + 3 = 12

Group – C

4. (a) For systematic (7, 4) cyclic code, determine the generator matrix and parity check matrix, where generator polynomial is $G(x) = p^3 + p + 1$.

B.TECH/IT/4TH SEM/INFO 2203/2017

(b) A generator matrix of (6, 3) linear block code is given below:

$$\mathbf{H} = \begin{bmatrix} 100111\\ 010110\\ 001011 \end{bmatrix}$$

- (i) Determine the d_{\min} for the above code.
- (ii) If the received codeword is 101101, determine the message bit sequence.

6 + (3 + 3) = 12

- 5. (a) The receiver use CRC for detecting errors in the received codeword, where the divisor polynomial is $x^3 + 1$. The received codeword is 1101110100101. Determine whether the received code is error free or not.
 - (b) The parity check matrix of a (7, 4) Hamming code is given below:

$$\mathbf{H} = \begin{bmatrix} 1110100\\0111010\\1101001 \end{bmatrix}$$

Calculate the syndrome vector for single bit error.

Group – D

- 6. (a) Determine the conjugates for the field element α in GF(2⁴).
 - (b) Find the generator polynomial g(x) for a single error correcting binary BCH code of block length 15 over GF (16). Use primitive polynomial $p(x) = x^5 + x + 1$.

4 + 8 = 12

- 7. (a) A codeword c(x) of the (15, 9) triple error correcting BCH code incurs errors so as to give v(x) = $x^{10} + \alpha^3 x^8 + \alpha^{11} x^7 + \alpha^8 x^6 + \alpha^6 x^5 + \alpha^4 x^4 + \alpha^5 x^2 + \alpha^9 x + \alpha^6$. Determine error location polynomial using Reed Solomon code.
 - (b) Find the Minimal Polynomial for the field element α^3 in GF (2⁴). Use the primitive polynomial $p(z) = z^4 + z + 1$ to construct GF(2⁴).

8 + 4 = 12

3

Group – E

- 8 The following figure shows the encoder for a rate $r = \frac{1}{2}$, constraint length K = 4 convolutional code.
 - (i) Determine the encoder output produced by the message sequence 10111.....
 - (ii) Construct the code tree for the encoder.
 - (iii) Trace the path through the tree that corresponds to the message sequence 10111....
 - (iv) Compare the resulting encoder output with that found in part (i).

- 9. (a) Make a comparative study between code tree and trellis diagram.
 - (b) Consider the (3, 1, 2) convolutional encoder with impulse response, $g^1 = \{1 \ 1 \ 0\}, \qquad g^2 = \{1 \ 0 \ 1\}, \qquad g^3 = \{1 \ 1 \ 1\}$
 - (i) Draw the encoder block diagram.
 - (ii) Find the generator matrix and output code vector for input message m = $\{1 \ 1 \ 1 \ 0 \ 1\}$.

$$3 + (3 + 6) = 12$$

B.TECH/IT/4TH SEM/INFO 2203/2017

INFORMATION THEORY & CODING (INFO 2203)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
 - (i) The value of leading coefficient of a monic polynomial is (a) 0.5 (b) 1 (c) 4 (d) 16.
 - (ii) Coding efficiency for source with entropy H(S) and average length L is
 (a) H(S). L
 (b) H(S) L
 (c) H(S) + L
 (d) H(S) / L.
 - (iii) The channel capacity is a measure of(a) entropy rate
 - (b) maximum rate of information a channel can handle
 - (c) information contents of messages transmitted in a channel(d) none of these.
 - (iv) What is the mutual information of a channel with independent inputs?
 (a) Zero
 (b) Constant
 (c) Variable
 (d) Infinity.
 - (v) The binary symbols 0 & 1 are transmitted with probabilities 1/4 & 3/4 respectively. The corresponding self informations are
 (a) 2 bits & 0.415 bits
 (b) 0 & 1 bits
 (c) 1 & 0 bits
 (d) 0 & 0 bits.
 - (vi) A voice grade telephone channel has a bandwidth of 3400Hz. If the signal to noise ratio (SNR) on the channel is 30dB, the capacity of the channel is
 (a) 35.88 kbits/sec
 (b) 32.88 kbits/sec
 (c) 34.88 kbits/sec
 (d) 33.88 kbits/sec.