B.TECH/EE/6TH SEM/ELEC 3203/2017

- (vi) For a system the open loop transfer function is given by $G(s)H(s) = \frac{k(s+2)}{s^2(s+4)}$. The centroid is located at (a) -1 (b) -3 (c) -4 (d) 0.
- (vii) A system having a transfer function $G(s) = \frac{(1+5s)}{(1+50s)}$ is a
 - (a) lag compensator(b) lead compensator(c) lag-lead compensator(d) lead-lag compensator.
- (viii) The relative stability of a system is given by
 - (a) gain margin alone
 - (b) phase margin alone
 - (c) both gain margin and phase margin
 - (d) cannot be determined from gain margin or phase margin.
- (ix) By the use of PI control for a second order system, the steady state error
 (a) increases
 (b) decreases
 (c) remains unaltered
 (d) cannot be determined.
- (x) If a system is described by, $A = \begin{bmatrix} -0.5 & 0 \\ 0 & -2 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ then
 - (a) system is controllable
 - (b) system is uncontrollable
 - (c) system is undefined
 - (d) cannot comment on controllability.

Group – B

2. Determine the transfer function of the system shown in Fig. (1) using block diagram reduction techniques. Apply Mason's gain formula to verify the results.

B.TECH/EE/6TH SEM/ELEC 3203/2017

- 3. Write short notes on **any three** of the followings:-
 - (i) Potentiometer
 - (ii) Tacho generator
 - (iii) Synchro
 - (iv) Gyroscop.

 $(3 \times 4) = 12$

Group – C

- 4. (a) The open loop transfer function of a unity negative feedback system is given by $G(s) = \frac{K}{s(\tau s+1)}$. Where *K* and τ are positive constants. By what factor should the gain be reduced so that the peak overshoot of unit step response for the closed loop system is reduced from 75% to 25%.
 - (b) Determine the values of 'k' and 'b' so that the system whose open loop transfer function is given by $G(s)H(s) = \frac{k(s+1)}{s^3+bs^2+3s+1}$ oscillates at a frequency of 2 rad/sec. 7 + 5 = 12
- 5. (a) What do you mean by Root Locus of a system?
 - (b) Sketch the root locus of a unity negative feedback system whose open loop transfer function is given by

$$G(s)H(s) = \frac{K(s+1)(s+2)}{(s+0.1)(s-1)}$$

2+10=12

Group – D

6. (a) Draw the polar plot of a system having a transfer function

$$G(s) = \frac{10}{s(s+2)}$$

(b) The open loop transfer function of a unity negative feedback system is given by

$$G(s)H(s) = \frac{40}{s(s+2)(s+4)}$$

Draw the Nyquist diagram and comment on stability of the closed loop system. 2 + 10 = 12

B.TECH/EE/6TH SEM/ELEC 3203/2017

7. The open loop transfer function of a unity negative feedback system is $G(s)H(s) = \frac{200(s+10)}{s(s+5)(s+20)}$. Draw the Bode plot. Hence find gain margin, phase margin, gain cross over frequency and phase cross over frequency of the system. Comment on stability of the system. (9+2+1) = 12

Group – E

- 8. (a) Discuss the effect on the performance of a second order system, when controlled using P-control, PD-control and PI-control action.
 - (b) Find the observable canonical form of the system whose transfer function is

$$H(s) = \frac{s^2 + 4s + 3}{s^4 + 2s^3 + 9s^2 + 6s + 2}$$

6+6=12

9. (a) A system is described by

 $\dot{X} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} X + \begin{bmatrix} 0 \\ 1 \end{bmatrix} U$ and $y = \begin{bmatrix} 1 & 0 \end{bmatrix} X$ Check the controllability and observability of the system.

(b) A system is described by,

 $\dot{X} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} X + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$ and $y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} X$

Using state feedback control, place the poles of the closed loop system in desired locations, $s = -2 \pm j2\sqrt{3}$ and s = -10. Determine the state feedback gain matrix.

4 + 8 = 12

B.TECH/EE/6TH SEM/ELEC 3203/2017

CONTROL SYSTEM (ELEC 3203)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following: $10 \times 1 = 10$ (i) The transfer function of a system is $T(s) = \frac{K}{s^3(1+Ts)}$. The type and order

of the system are respectively(a) 4 and 3(b) 3 and 4(c) 3 and 3(d) 4 and 4.

- (ii) The output of a linear system for a unit step input is given by $t^2 e^{-t}$. The transfer function is given by (a) $\frac{s}{(s+1)^3}$ (b) $\frac{2s}{(s+1)^3}$ (c) $\frac{1}{s^2(s+1)}$ (d) $\frac{2}{s(s+1)^2}$
- (iii) Which of the following has a closed loop configuration?
 (a) Field controlled D.C servo motor
 (b) Armature controlled D.C servo motor
 (c) Both (a) and (b)

(d) D.C series motor.

(iv) The characteristic equation of a system is $s^2 + 8s + 16 = 0$. Hence the values of natural frequency of oscillation and damping ratio are respectively

a) 4 rad/sec and 1	(b) 2 rad/sec and 0.5
c) 3 rad/sec and 1.2	(d) 40 rad/sec and 10.

(v) The first column of the Routh's table contains the following integers 2, 4, -5, -3, 2. The system is
(a) Stable
(b) Marginally stable
(c) Unstable
(d) Stability cannot be determined.

1