M.TECH/REEN/2ND SEM/REEN 5243/2017 BIO ENERGY (REEN 5243)

Time Anotteu: 5 m S	Time	Allotte	d: 3	hrs
---------------------	------	---------	------	-----

Full Marks: 70

 $10 \times 1 = 10$

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and

<u>Any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A

(Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

- (i) When a bioprocess takes place
 (a) the product becomes non biodegradable
 (b) high pressure is required
 (c) high temperature is required
 (d) both (b) & (C) are not true.
- (ii) The term Gasification is related to:
 (a) oxidation
 (b)
 (c) pyrolysis
 (d)
 - (b) reduction(d) combination of a-c .
- (iii) Shewanella putrefaciens is considered as standard bacteria for
 (a) ORBRC reactor
 (b) microbial fuel cell
 (c) producing antibiotics
 (d) ultra filtration module.
- (iv) Grey Water is also termed as:(a) sewage(c) sullage

(b) river water(d) spring water.

- (v) The producer gas from bio mass gasification is a combination of
 (a) CO, H₂, CO₂
 (b) CO₂, H₂O, NO
 (c) CO, H₂, CH₄
 (d) none of the above .
- (vi) Typical Concentration of the parameter MLSS Activated sludge Process is
 (a) 0
 (b) Infinity
 (c) less than 1000
 (d) between 2000-4000.

M.TECH/REEN/2ND SEM/REEN 5243/2017

- (vii) Bio-methenation is carried by
 - (a) bacteria
 - (b) chemical reactions of Bio-Masses
 - (c) physical reactions of Bio-Masses
 - (d) fermentation.
- (viii) The typical reactions for production of Bio Diesel involve(a) aldol Condensation(b) transesterification(c) pyrolysis(d) polymerization.
- (ix) Root Zone treatment is a low cost treatment using
 (a) Extended Aeration System
 (b) Trickling Filter
 (c) Canna Species
 (d) Earthworm.
- (x) The system of operation of Facultative pond is
 (a) purely aerobic
 (b) purely anaerobic
 (c) aerobic in day & anaerobic in night time
 (d) none of the above.

Group - B

- 2.(a) Delineate the basics of Photo-synthesis process with reactions, brief reaction mechanism and plausible explanations wherever necessary.
 - (b) What do you mean by Biomass Energy potential? Sketch the standard Biomass Energy Paths.
 - 6 + 6 = 12
- Present a case study involving the process of utilization of Canteen Food Waste in a medium sized industry serving 2000 persons per day.
 12

Group – C

- 4.(a) Discuss the different zones in a Gasifier generating Producer gas with a neat sketch.
 - (b) Discuss the principles & operation of a composting plant

5 + 7 = 12

5. Discuss the construction and operation of a Rotating Biological Disk Contactor required to be set up for a medium sized Renewable Energy Industry with a workman force of 1000 per day with a neat sketch.

8 + 4 = 12

2

M.TECH/REEN/2ND SEM/REEN 5243/2017

Group – D

- 6.(a) A mixture of water and ethyl alcohol containing 0.16 mol fraction alcohol is continuously distilled in a plate fractionating column to give a product containing 0.77 mol fraction alcohol and a waste of 0.02 mol fraction alcohol. It is proposed to withdraw 25% of the alcohol in the entering stream as a side stream with a mol fraction of 0.50 alcohol.
- (b) Determine the number of theoretical plates required and the plate from which the side stream should be withdrawn if the feed is liquor at the boiling point and a reflux ratio of 2 is used.

6 + 6= 12

- 7. (a) Discuss the process of Bio-diesel production by highlighting the following: Raw Material.
- (b) Reaction Pathways.
- (c) Fuel Characteristics.

4 + 4 + 4 = 12

Group - E

8. The bioconversion of sucrose by the enzyme sucrase at room temperature resulted in the batch reaction data given in the table below:

С	m moles / I	1.0	0.84	0.68	0.53	0.38	0.27	0.16	0.09	0.04	0.018	0.006	0.0025
t	hr	0	1	2	3	4	5	6	7	8	9	10	11

The initial concentration used was 0.01m moles / /. Determine whether these data can reasonably fit the Michaelis-Menten kinetics.

 $k_3C_3C_E$

-r_A = _____ C +k_m

where k_m is the Michaelis-Menten constant. If the fit is reasonable determine the constants k_3 and k_m . Use integral methods of analysis.

9. (a) What is Photo-bioreactor?

(b) Write technical notes on :

- i) Raceway pond.
- ii) Moving grate Combustor.

 $2 + (5 \times 2) = 12$

12

3