	B.TECH/BT/3rd SEM /BIOT 2102/2015	B.TECH/BT/3 rd SEM /BIOT 2103/2015 2015
An	(b) A thermic fluid is used as a heating medium in a particular process. A the thermic fluid at atmospheric pressure and 473K. The circular 10,000lph. The fluid discharged from the pump, passes through a heat receives the heat from product gases of combustion. The heat trans-	Biochemistry (BIOT 2103) Full Marks : 70
7. (a) Dra	232.6kW. The motor of the pump consumes 1.1kW. The overall	Time Alloures out of the right margin indicate full marks.
(b) De ca ex	the heater is 100kPag. Assume negligible kinetic energy and poter changes, negligible frictional loss and no heat loss to the surrounding specific gravity and the mean heat capacity of the fluid are 0.75 and 2 respectively at the operating conditions, calculate the outlet tempor	Candidates are required to answer Group A and Candidates are required to answer Group A and any 5 (five) from Group B to E, taking <u>at least one</u> from each group.
(c) He	fluid.	Indidates are required to give answer in their output of the output of t
8. (a) De	Group – E	Choose the correct alternatives for the following: Choose the correct alternatives for the following: at gain of ATP molecule resulting from complete oxidation of 1 molecule of
(c) Ho mi	8. Saccharomyces cerevisiae is grown anaerobically in continuous cultu Glucose is used as carbon source and ammonia as the nitrogen source, ethanol and glycerol is produced. At steady state, mass flows to and from	(d) 38. (a) 2 (b) 4 (c) 32 (d) 38.
9. (a) WI	at steady state are as follows: Glucose in: 36kg/h NH3 in: 0.4kg/h	 (ii) Hexokinase (a) catalyses transfer of phophate group from ATP to any hexose (b) catalyses transfer of phophate group from ATP to only glucose
(b) Wh	Cell out: 2.81k/h Gly cerol out: 7.94kg/h Ethanolout:11.9kg/h	 (c) tranfers inorganic phosphate to nexose (d) converts fructose 6 phosphate to fructose-1,6-bisphosphate.
(c) Wł qu	CO_2 out:13.6kg/h H_2 O out: 0.15kg/h	(iii) TCA cycle is (a) catabolic (b) amphibolic (c) anabolic (d) cyclic.
(d) Wi pro	Estimate the cooling requirements. Heat of combustion of glucose= -2805kJ/mol Heat of combustion of NH ₃ = -382.6kJ/mol	(iv) Rubisco binds to (a) CO_2 (b) O_2 (c) both CO_2 and O_2 (d) none.
10. (a) Wh	Heat of combustion of gly cerol= -1655.4kJ /mol Heat of combustion of ethanol= -1366.8kJ /mol Molecular weight of gly cerol is 92.	(v) Alanine is deaminated to produce (a) pyruvic acid (b) citric acid (c) oxalic acid (d) fumeric acid.
fro (b) De Syr and	9. Baker's yeast is produced in a 50,000l fermenter under aerobic concarbon substrate is sucrose; ammonia is provided as nitrogen source. biomass composition is $CH_{1.83}O_{0.55}N_{0.17}$ with 5% ash. Under efficient	 (vi) Three amino acids that donate amino group for purine biosynthesis are (a) glycine, glutamine and aspartate (b) glycine, beta-alanine and aspartate (c) glycine, alanine and aspartate
11. (a) Wh pro	0.5g/g. If the specific growth rate is 0.45h ⁻¹ , estimate the rate of h required to maintain constant temperature in the fermenter whe concentration is 10g/l.	(d) lysine, glutamine and asparagine. (d) lysine, glutamine and asparagine. (vii) One ketogenic amino acid is (a) laucine (b) arginine (c) alanine (d) glutamine.
(b) Wi wh (c) W		 (viii) Palmitic acid is an (a) odd chain saturated fatty acid (b) odd chain unsatured fatty acid (c) even chain saturated fatty acid (d) even chain unsaturated fatty acid
it? 3262	BIOT 2102 4	10T 2103 1

		B.TECH/BT/3rd SEM /BIOT 2103/2015	HIBT/3rd SEM /BIOT 2103/2015
	A	An (ix) call first messenger (b) Ligand (c) receptor (d) second $m_{e_{S_{u}}}$	Group – D
7. ((a) D pl b) D	Ora (x) The disease caused by lipid metabolism is ha (a) liver cirrhosis (b) atherosclerosis (c) all of the above (d) none of these.	what do you mean by transammination? Discuss the role of vitamin B ₆ in transammination.
	ca		piscuss catabolism of one glucogenic amino acid.
	ex N	Group – B	ercuss catabolism of one ketogenic amino acid.
((c) H	2.(a) Write short note on allosteric regulation with a suitable example.	pisce do you mean by oxidative deamination?
8. (a (t	a) De o) Di	(b) Discuss with a flow chart the pay off phase of glycolysis. Which step of this phypassed in gluconeogenesis and how?	Give a brief account of disorders of purine nucleotide metabolism. (2+2)+2+2+2=12
(0	c) Ho mi	(c) Explain the hormonal regulation of glucose metabolism.	a targ acceptial and non-essential amino acids? Give examples.
	Dr	(d) Explain with schematic diagram the mechanism of action of py dehydrogenase complex.	What is glutathione? Describe its synthesis and function in cell.
9. (a) WI	2 + (3 + 2) + 2 +	to be salvage pathway for purine biosynthesis.
(b) Wh	3.(a) Diagrammatically represent TCA cycle with structure of all intermediates mem all enzymes and cofactors.	Which enzyme is involved with Lesch-Nyhan syndrome? 3+3+4+2=12
(c)) Wł qua	(b) How cytoplasmic NAD ⁺ is regenerated?	Group – E
(d)) W1	(c) State and explain chemiosmotic coupling hypothesis.	What are G-proteins? How are G-proteins activated?
	spe	(d) Name two inhibitors of electron transport chain and explain their mechanism action.) Show how insulin cascade works? $(4+2)+6=12$
10. (a)	W	6+2+2+	the p
(h)	fro	Group – C	What are second messengers?
(0)	Syr	4.(a) Classify hormones.	Describe the mechanism by which tyrosine kinase works?
1. (a)	and Wh	(b) Describe backbone structure of steroid hormones and show how hormones work?	What are the different types of gap junctions? $2+6+4=12$
(b)	pro bac Wh	5.(a) Classify the different classes of vitamins.	
	wh	(b) What are roles of different water-soluble vitamins?	; cata
(c)	Wh it?	(c) What are roles of different lipid-soluble vitamins? 4+4*	
2		BIOT 2103 2	T 2103 3