Group - D

- 6.(a) What are the operating parameters and major considerations of membrane bioreactors?
 - (b) Write down the application of trickling filter in waste water treatment.

6 + 6 = 12

- 7. (a) What is solid state fermentation? Write down the different requirements for solid state fermentation bioreactor and plant and animal cell bioreactors in brief.
 - (b) What are the bioreactor considerations for an immobilized cell system?

Group - E

8. What are the different control system for a bioreactor? Write down the working principles of each of them.

(4+8) = 12

(2+5)+5=12

- 9.(a) How can we monitor and control the level of dissolved oxygen in a bioprocess?
- (b) Write down the mechanism for monitoring and control of temperature and pH.

4

6 + 6 = 12

M.TECH/BT/2ND SEM/BIOT 5204/2017 ADVANCES IN BIOREACTOR DESIGN, DEVELOPMENT AND SCALE UP (BIOT 5204)

Time Allotted: 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>Any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

10 x 1=10

- (i) A reactor may be assumed as plug flow if Reynolds number is
 (a) less than 2100
 (b) more than 4100
 (c) in between 2100 & 4100
 (d) none of these.
- (ii) If Thiele parameter, φ, is greater than 3, the reaction is
 (a) mass transfer controlling
 (b) reaction rate controlling
 (c) molecular diffusion controlling
 (d) intra-particle diffusion controlling .
- (iii) Low flow rate of a gas is measured by
 (a) rotameter
 (b) orifice meter
 (c) wet gas meter
 (d) thermo-anemometer.
- (iv) Cell suspension is a non-Newtonian fluid of the type
 (a) Bingham plastic
 (b) Pseudo plastic
 (c) Dialant
 (d) none of these.
- (v) Volumetric mass transfer coefficient K_{La} for bubble column is given as a function of

(a) <i>P/V</i>	(b) V _{gs}
(c) Re ₁	(d) combination of (a) and (b).

M.TECH/BT/2ND SEM/BIOT 5204/2017

- (vi) At small substrate concentration, Monod model simplifies to the rate equation of
 - (a) first order reaction (b) zero order reaction
 - (c) second order reaction (d) pseudo first order reaction.
- (vii) The criterion for the selection of animal cell culture reactor is
 - (a) low shear rate (b) removal of toxic metabolites
 - (c) combination of (a) and (b) (d) high cell mass concentration.

(viii) A non-ideal reactor is characterised by

- (a) residence time distribution(b) Peclet number(c) combination of reactors(d) segregated model.
- (ix) The scale up criterion for a CSTR to be used for animal cell culture is based on
 - (a) geometric similarity
 - (b) equal Power Volume ratio
 - (c) equal tip velocity
 - (d) equal impeller based Reynolds number.
- (x) Microbial fermentation is best carried out for high yield of cell mass by(a) plug flow reactor
 - (b) batch reactor
 - (c) back-mixed reactor
 - (d) fluidized bed reactor.

Group - B

2.(a) A human being (75 kg) consumes about 6000 kJ of food per day. Assume that the food is all glucose and that the overall reaction is

 $C_{16}H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O_1 - \Delta H_r = 2816 \text{ kJ}$

Find man's metabolic rate in terms of mole of oxygen used per m³ of person per second. Density of human body is 1050 Kg/m³.

(b) What is critical oxygen concentration? What are the factors that affect volumetric mass transfer coefficient?

8 + (1 + 3) = 12

M.TECH/BT/2ND SEM/BIOT 5204/2017

3.(a) Enzyme E catalyzes the transformation of reactant A to product R as follows :

$$A \rightarrow R_{,} - r_{A} = \frac{200C_{A}C_{EO}}{2 + C_{A}} \frac{mol}{liter.min}$$

If we introduce enzyme ($C_{E0} = 0.001 \text{ mol/liter}$) and reactant ($C_{A0} = 10 \text{ mol/liter}$) into a batch reactor and let the reaction proceed, find the time needed for the concentration of reactant to drop to 0.025 mol/liter. Note that the concentration of enzyme remains unchanged during the reaction.

(b) The first-order reversible liquid reaction, $A \rightleftharpoons R$, $C_{A0} = 0.5$ mol/liter, $C_{R0} = 0$, takes place in a batch reactor. After eight minutes, conversion of A is 33.3 % while equilibrium conversion is 66.7%. Find the rate equation for this reaction.

6 + 6 = 12

Group - C

- 4.(a) After a batch fermentation, the system is dismantled and approximately 75% of the cell mass is suspended in the liquid phase (2L) while 25% is attached to the reactor walls and internals in a thick film of thickness 0.3cm. Work with radioactive tracers shows that 50% of the target product (intracellular) is associated with each cell fraction. The productivity of this reactor is 2g product/L at the 2L scale. What would be the productivity at 20,000L scale if both reactors had a height-to-diameter ratio of 2 to 1?
 - (b) What are the principles and criteria for scale up?

8 + 4 = 12

- 5.(a) The scale up volume of a reactor is 100 m³ from 0.1 m³ reactor with L/D = 3. The impeller diameter, $D_I = 0.3$ D. If the agitator speed of the small reactor is 600 rpm, what is the agitator speed of the bigger reactor, on the basis of equal mixing time, t_m?
 - (b) Describe the important features of a stirred tank reactor with respect to efficient mixing.

9 + 3 = 12

2