M.TECH/CSE/2ND SEM /CSEN 5203/2016

(c) Netwok Interface control sublayer(d) none of the above

- (vi) Which of the following is a valid host for a network 192.168.10.32/28?
 (a) 192.168.10.14
 (b) 192.168.10.54
 (c) 192.168.10.39
 (d) 192.168.10.47
- (viii) At which layer circuit switching takes place?
 (a) Physical layer
 (b) Data Link layer
 (c) Network layer
 (d) Transport layer.
- (ix) If you want to find the number of routers between a source and destination, the utility to be used is.
 (a) ipconfig
 (b) ping
 (c) ifconfig
 (d) traceroute.
- (x) Which of the following is not IPV6 address?
 (a) Any Cast
 (b) Multicast
 (c) Unicast
 (d) Broadcast.

Group - B

- 2. (a) Describe the classifications and propagation methods for unguided media.
 - (b) A channel has a bandwidth of 1 MHz and a signal to noise ratio 63 dB. Determine appropriate bit rate and signal level.
 - (c) Encode the bit sequence 1001011100 using NRZ-L, NRZ-I coding scheme.

What do you mean by wavelength division multiplexing.

4 + (2+2) + (2+2) = 12

- 3. (a) If our system wants to guarantee the detection of upto s errors, what should the minimum Hamming distance between valid code words be and why? In this context, also explain what is meant by data word and code word.
 - (b) Let us denote a code word as a polynomial with binary coefficients of the form c(x), error as e(x) and the generator function as g(x). How can the received code word be expressed using the above? Also, if I

CSEN 5203

M.TECH/CSE/2ND SEM /CSEN 5203/2016

want my system to detect all single bit errors, explain what should be a proper choice of g(x) and why.

5 + 7 = 12

Group - C

- 4. (a) Find the expressions for average delay and throughput for both pure ALOHA and slotted ALOHA. Compare their performances as well.
 - (b) "In Selective-Repeat ARQ, sender window size > 2^{m-1}." Is it correct? Justify.
 - (c) Explain leaky bucket algorithm

3 + (3+2) + 4 = 12

5. (a) The sender has a sliding window size = 3. Go back and N protocol is used. Discuss the behaviour of the receiving sliding window under the following cases:
Case1 : Frame 2 is lost in transition
Case 2: Frame no. 2 is received by the receiver correctly but ACK is

lost.

- (b) What are the problems of providing redundant path in a bridged network. How does a transparent bridge provide solution to this problem.
- (c) What do you mean by piggybacking?

(2+3) + (2+3) + 2 = 12

Group - D

6. (a) Router J has 4 neighbours A, I, H,K. The following list summerizes the various delay:

JA: 8	JI:10	JH:12	JK:6
A to G: 18	I to G: 31	H to G: 6	K to G: 31

Using distance vector routing protocol determine the routing table entry for J to the router G. Discuss the problem associated with the same and how this problem is solved.

(b) Explain the principle of OSPF.

(4+2+3) + 3 = 12

7. (a) A router with IP address 125.45.23.12 and Ethernet physical address 23:45:AB:4F:67:CD has received a packet for a destination with IP

3

M.TECH/CSE/2ND SEM /CSEN 5203/2016

address 125.11.78.10. and Ethernet physical address AA:BB:A2:4F:67:CD. Show the entries in the ARP request packet sent by the router. Encapsulate the ARP request packet in a data link frame. Fill in all the fields.

(b) S opens a TCP connection with an initial sequence number (ISN) of 14535. Other party R opens the connection with an ISN of 21,732. Show the three TCP segments during the connection establishment.

8 + 4 = 12

Group - E

- 8. (a) Explain the concept of frequency reuse technique in the cellular structure.
 - (b) Explain CDMA techniques with an example. What is hidden station and exposed station problem in Wireless LAN.

3+ (5+4) = 12

- 9. (a) Why is Bluetooth referred to as an ad-hoc network?
 - (b) Explain the layered architecture of Bluetooth.
 - (c) What is piconet and scatternet?

2 + 6 + 4 = 12

M.TECH/CSE/2ND SEM /CSEN 5203/2016 2016

ADVANCED COMPUTER NETWORKS (CSEN 5203)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choose	10 × 1=10				
	(i)	The Hamming D (a) 0	Distance d(000,011) (b) 3) is (c) 2	(d) 1.	
	(ii)	Interframe gap is? (a) idle time between frames (b) idle time between frame bits (c) idle time between packets (d) control frame between two data frames				
	(iii)	Which routing set up and upda (a) Distance Veo (c) Dijkstra	Thich routing algorithm requires more traffic between routers for et up and updating?a) Distance Vector(b) Link State (d) Vector Link			
	(iv)	If there are N routers from source to destination, total end to end delay in sending packet P(L->number of bits in the packet R-> transmission rate) is (a) N (b) (N*L)/R (c) (2N*L)/R (d) L/R				
	(v)	Automatic repe by (a) Logical Link (b) Media acces	at request error m control sublayer s control sublayer	anagement mechani	ism is provided	

CSEN 5203

1