CHE/Odd/Sem-31

culate the standa $C_2H_5OH(1) + C$ C_2H_5OH C_2H_5OH CH_3COOH $C_2H_5OOCCH_3$

bon monoxide a at 500° C in 90 bustion leave oved in the reac ed assuming co O_2 and N_2 an ectively.)

moles of liquid to through the ditions the relation culate the mole position is 50 n

1.0g of n meter, with al condensed, 4 and the net h he latent heat of

B.TECH/CHE/3rd SEM /CHEN 2101/2015

A slurry of this material giving 1.5 kg of cake solid/m³ of filtrate is to be filten a constant pressure drop of 50 kg/cm² and a temperature of 20°C. Experiment this sludge and the filter cloth to be used gave a value of $R_m = 1.2 \times 10^{10}$ m⁻¹.

A plate and frame filter is to be used. Calculate the total no of frames require give 2000 lit of filtrate in 1 hr. The viscosity of the water at 20°C is 1 cp and of one frame is 300 cm².

4

B.TECH/CHE/3rd SEM /CHEN 2102/2015 2015

Fluid Mechanics (CHEN 2102)

lotted : 3 hrs

6+6:

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking <u>at least one</u> from each group.

idates are required to give answer in their own words as far as practicable.

Full Marks : 70

FT

ITA

as

e

Group - (Multiple Choice Type Choose the correct alternatives for the follow The ratio of inertial forces to gravitational for (a) Froude (b) Euler (c	e Que: ving: orces	stions) is called - nolds	10 x numb (d) Ma	t 1=10 ber ach.				
is measured by niezometr								
	(c) or			2100.				
For turbulent flow of the Newtonian fluid in a circular cross-section pipe, the ratio								
	(c) 0.		(d) •	< 0.5.				
 ⁽¹⁾ The velocity profile for a Bingham plastic to pipe is ^(a) Flat ^(c) Flat near the wall and parabolic in the ^(d)Parabolic near the wall and flat in the 	(b) P e mide	arabolic dle	laminar con	ditions in a				
^(h) The operation of a venturimeter is based ^(a) Variable flow area ^(c) Pressure drop across a nozzle	(d)	None of t	at a stagnatio he above.					
(a) ½ maximum velocity (c) 1/3 maximum velocity	iven la (b) (d)	2/3 max	ow through a kimum veloci mum velocity	ty				

CHEN 2101

1

E/Odd/Sem-31			
te the standa	B.TECH/CHE/3rd SEM /CHEN 210	2/2015	
LOH(1) G	(wiji) A mine - CLD		CHE/3rd SEM /CHEN 2102/2015
$H_5OH(1) + C$ f combustion	of water flowing through the ma	n pipe is 5 m/c Accuration	Group – C
	of the bifurcated section, the aver	nto two pipes of I.D. 2 m each. The aven in pipe is 5 m/s. Assuming equal flow "age velocity through the bifurcated p (c) 20 (d)	through ipe in basidering the average velocity distribution in streamline flow through a tube for
I ₅ OH	(a) 5 (b) 10	() or	le in cider me de le construction de la constructio
3COOH	(ix) A pathline in a flow field is define	(u)	45. Newtonian fluid flow, show that the relation between friction factor(f) and $\frac{Newtonian}{Newtonian}$ No.(Re) is f= $\frac{16}{R_e}$.
500CCH3	(a) Trajectory of a fluid particle o	d as	reynolds No. (No) is in Re
monoxide a	(b) A line or curve such that tang	ent at any point represent to	udden enlargement of water main pipe diameter from 350 mm to 700 mm
0° C in 909	that point	are any point represents direction	of velocities a sudden enlargement of water main pipe diameter from 350 mm to 700 mm by the hydraulic gradient rises by 10 mm. Estimate the rate of flow.
ion leave	(c) Locus of temporary locations	of all month 1	the nyur 7+ 5=12
	a flow field at any instant of the	ne proced difforgina j	Ixed M
in the react	contract every point	ne of it, the fluid velocity remains consta	the laminar flow over a flat plate with zero pressure gradient, obtain an
ssuming co	(x) Toothpaste is a type of		nt expression for boundary layer thickness (nominal) in terms of Reynolds number and wall shear stress. Assume a parabolic velocity profile over the plate.
and N_2 ar	(a) Pseudoplastic fluid	(b) Dilatant fluid	and wall shear stress. Assume a parabolic velocity prome over the plate.
ely.)	(c) Bingham plastic	(d) Newtonian fluid.	NWater at 20 °C is pumped at a constant rate 10 m ³ /h from a large reservoir resting
		c y contain nuid.	on a floor to the open top of an absorption tower. The point of discharge is 5 m
of liquid			above the floor, and frictional losses in the 50 mm pipe from the reservoir to the
ough the		roup – B	tower amount to 3 J/kg. At what height from the reservoir must the water level be
the relati	2.(a) A conical funnel of half angle Φ	trains through a small L	kept if the pump can deliver only 0.1 kW? ^{ter da} () Water flows by gravity from one reservoir to a lower one through a straight, ^{ht off} inclined galvanized iron pipe. The pipe diameter is 50 mm, and total length is 250
the moles	vertex. The speed of liquid leaving	the funnel is $n = 2/2$	^{ter da} f) Water flows by gravity from one reservoir to a lower one through a straight, ht of inclined galvanized iron pipe. The pipe diameter is 50 mm, and total length is 250 Obtain. Each reservoir is open to atmosphere. Calculate the elevation difference
on is 50 m	free surface above the hole. The	the funnel is $v = \sqrt[2]{gy}$ where y = heig funnel is initially filled to height y ₀ .	ht of inclined galvanized iron pipe. The pipe diameter is 50 mm, and total length is 250
11 15 50 11	expression for time required to dra	ain the funnel. Calculate the time real	Obtain. Each reservoir is open to atmosphere. Calculate the elevation difference irred required to maintain a flowrate of 0.007 m ³ /s. Also estimate the fraction of the total loss occupied by minor losses. The roughness factor of the pipe is 0.15 mm, minor
g of na	so if the initial height is 1 m and Φ i	s 30º.	fired required to maintain a flowrate of 0.007 m ³ /s. Also estimate the fraction of the total
r, with all	(b) Given velocity field of fuild		105 specification of a state of a state of the second state of the second state of 103 m ² /s
ensed, 40	by particles that passed through the	$x^{2} = 2x(1 + 0.5t)\hat{i} + y\hat{j}$, plot the streakling the point (1,1,0) during t= 0 to t= 3 s	th What would be the modifications in the result obtained if the water was pumped
he net he	with streamlines through the po	the point $(1,1,0)$ during t= 0 to t= 3 s int at t = 0,1,2 s (Rectangular grad	^{Cor} through a smooth pipe? (Moody diagram required)
nt heat of	required)	Rectangular gra	ph 4 + 3 + 5 = 12
In the First out	(c) Explain the concent		
noittine	(c) Explain the concept of continuum Knudsen number	n hypothesis mentioning the signil	Group – D
Vield a			^(a) A vertical venturimeter has an area ratio of 5. It has a throat diameter of 1 cm.
1 house		5 +5	*' When oil of specific gravity 0.8 flows through it the mercury in the differential
a mogure	3(2) Classif it		
compus	3.(a) Classify the devices used for me relation between Absolute pressure.	asurement of fluid pressure and evi	Venturimeter if the coefficient of discharge is 0.98.
anier all	What are the gauge process	and vacuum pressure	() Bried 1 11 A 12 A 14 A 14 A 14 A 14 A 14 A 14
ER AN	tree surface of a liquid have	pressure at a point 3 metre	Meaning and a start and a star
	pressure is 760 mm of Hg2 (Cincer and	ecific gravity of Unit kg/m ³ if the atm	discharge and head of liquid above the crest in a triangular notch.
Date by	is 1000 kg/m ³].	gravity of rig is 13.6 and density	
	(b)For a laminar flow of - M	and the second	^(c) Consider a 20 m long, 4 cm diameter pipe, discharging into an open container, as
	(b)For a laminar flow of a Newtonian f circular channel with respect to its ra	luid, show that the velocity distribut	^{shown} in Figure. The pipe inclination is 40°. The desirable flow rate is 8 L/s and the liquid properties are: density = 900 Kg/m ³ and viscosity = 0.18 Ns/m ² . Calculate
	to its ra		
1	CHEN 2102 2	(1+2+3	the power required to pump the liquid. Neglect minor losses.
-	L		¹¹ 2102 3

U

F TECI

TARY B

-HARDINA

as far as

·e

E/Odd/Sem-3r		2015	
	B.TECH/CHE/3 rd SEM /CHEN 2102/2015	Energy Engineering (CHEN 2103) Full Marks : 70	
te the standar	and See		FTEC
		Figures out of the right margin indicate full marks.	
$H_5OH(1) + CI$	Pump un	Fining OIII OI UIE 19	
f combustion	de trans	Figures out of the right Figures out of the right Candidates are required to answer Group A and Candidates A and Candidat	
I5OH	(d) Explain the working principle of a Pitot tube. What is meant by Sta	Candidates are required to une from each group	
COOH	pressure?	s (five) from Group B to E, taking we	
500CCH3	3+4+3+	Candidates are required to answer Group A and Candidates are required to answer Group A and any 5 (five) from Group B to E, taking <u>at least one</u> from each group.	TARY
50000113		required to give another A	, IIIIII
monoxide a 0° C in 909	7.(a) Write down the relations between pump head, capacity and rpm for cent pump.	(Multiple Choice Type C 10 x 1-10	
ion leave t		(b) Higher ignition temperature (c) Coal with higher volatile matter content has (b) Higher ignition temperature (d) None of these.	
	(b) A centrifugal pump has the following dimensions: Inlet diameter = 160 cm		
in the reac	diameter = 320 cm; width of the impeller at the inlet = 5 cm; Vane angle at the	(a) Higher calorific value (a) Higher calorific value (d) None of these.	Those of
ssuming co	$(\phi_1) = 0.45$ radians; and vane angle at the outlet $(\phi_2) = 0.25$ radians; width	(c) Higher tendency of a	·.
and N ₂ ar	inlet $(B_1) = 5$ cm; width at the outlet $(B_2) = 5$ cm.	tin India is maximum for	as far
ely.)	inlet $(B_1) = 5$ cm; width at the outlet $(B_2) = 5$ cm. Assuming shockless entry, determine the discharge and the head developed nump when the impeller rotates at 850 r.p.m.	(a) Thermal power Industry (a) Thermal power Industry (b) Steel Industry (c) Brick Industry	
to the n	pamp		
als substation	5+	7: (c) Cement Hudsely	
of liquid	Group – E	7: (c) Cement Industry (iii) Which process among the following is a thermal cracking process? (b) Catalytic reforming (c) Visbreaking.	
ough the	Group - E	(a) Hydrocracking (d) Visbreaking.	
the relati	8.(a) A water softener consists of a vertical tube of 100 mm diameter and pac	i i insting	
the mole	height of 0.5 m with ion-exchange resin particles. The particles may be con	(c) Hydrotreating (c) Hydrotrea	
on is 50 n	spherical with a diameter of 1.3 mm. Water flows over the bed because of gr	(b) Olefins	
)n is 50 n	well as a pressure difference at a rate of 200 mL/s. The bed has a porosity	(d) Napulenez	·e
)g of n	Calculate the pressure gradient.	(c) Aromatics	
r, with al		(c) Aromatics eant (v) For a controlled nuclear reaction, the multiplication factor must be (b) >1 (b) >1	
ensed, 4	(b) Briefly describe the different types of fluidization. Explain what is m	e^{ant} (v) For a controlled nuclear reas (b) >1	
	minimum fluidization velocity. Mention the different applications of fluidiza		
he net h		(c) = 1	
nt heat o	(c)Estimate the terminal velocity for limestone particles of diameter 0.08 mm		
mellion	2800 kg/m ³) falling in water at 30 °C. The viscosity of water is 10 ⁻³ Pascal se	(a) at 800° C for 10 min (d) at 925° C for 7 min.	
and the second		(a) at 800 c tot 2 min	
and the second	(d) Explain the significance of void fraction during flow of fluid through packet $3 + 4 + 3$. 7.21	
	3+4+3	(vii) Cetane number is highest for (b) Paraffins	
1 hogai	9.(a) Explain the significance of the concept of Prandtl's mixing length theory in	a) Aromatics (d) Olefins.	
ompos	turbulent flow and obtain an expression for the mixing length.		
	turbuient now and obtain an expression for the mixing length.	formance of a fuel is indicated by its	
acarv	(b) The air is flowing over a cylinder of diameter 50 mm and infinite lengt	(c) Napthenes h with (viii) The cold weather performance of a fuel is indicated by its (b) Pour point (b) Pour point	
152.03	velocity of 0.1 m/s. Find the total drag, shear drag and pressure drag on 1	(d) Smoke point	
	of the cylinder if the total drag coefficient is equal to 1.5 and shear drag co	(c) Flash point	
Diffe 1	aqual to 0.2 Take dangity of size = 1.25 kg/m3	400	
	6	+ 6 ² / ¹⁴ EN 2103	
	CHEN 2102 4		
and the second se			

6

14