M.TECH/CSE/2ND SEM/CSEN 5201/2017

T = { 0, 1, 2, 3, 4 }, S is the start symbol, and the productions are as follows: S \rightarrow A, S \rightarrow B, S \rightarrow 4, A \rightarrow 012S, B \rightarrow 012S3S.

Show that the grammar G is ambiguous.

(b) Provide a Type 2 (context-free) grammar for the following language L over the input alphabet { 0, 1 }:
 L = { α | the string α has more 0's than 1's }

(2 + 4) + 6 = 12

7. G = (V, T, S, P) is a Type 2 grammar, with $V = \{S, A, B, 0, 1, 2, 3, 4\}$, T = $\{0, 1, 2, 3, 4\}$, S as the start symbol and the following five production rules:

$$S \rightarrow A, S \rightarrow B, S \rightarrow 4, A \rightarrow 012S, B \rightarrow 012S3S.$$

Let L be the language generated by G.

- (i) Design a pushdown acceptor (pda) M that accepts L.
- (ii) Describe the steps by which the input string '012430124' is accepted by M. Also explain why the input string '0124340124' is not accepted by M.
 (6 + 3 + 3) = 12

Group - E

- 8.(a) Two positive integers m and n are written on a Turing machine tape in unary notation. The integer m is to the left of the integer n on the tape, and a single blank cell separates the two integers. At start the read/write head is positioned on the leftmost 1 of m. Give the state transition diagram of a Turing machine M that will halt on the leftmost 1 of m if $m \ge n$, and will halt on the leftmost 1 of n if m < n. Clearly state any assumptions made.
- (b) Describe how M operates on the following two sets of inputs: (i) m = 5, n = 2; (ii) m = 2, n = 3.

8 + 4 = 12

- 9.(a) Explain what is meant by a 'Universal Turing Machine'. Can every effective procedure be implemented by such a machine assuming the input is appropriately supplied?
- (b) What is the 'Halting Problem' for Turing Machines? What do we mean when we say that the Halting Problem for Turing machines is unsolvable?

6 + 6 = 12

M.TECH/CSE/2ND SEM/CSEN 5201/2017

THEORY OF COMPUTATION (CSEN 5201)

Time Allotted: 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and

<u>Any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A

(Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

10 × 1 = 10

- (i) It is known that the deterministic finite state acceptor (dfsa) M recognizes all the binary strings (and only those) in the regular expression 0*1011*. Then M must have at least n states, where n equals to

 (a) 2
 (b) 3
 (c) 4
 (d) 5.
- (ii) If L₁ and L₂ are two context free languages. Then L₁∩L₂
 (a) need not be regular but can be context free
 (b) need not be context free but can be context sensitive
 (c) is always regular
 (d) is always context free.
- (iii) If it is known that the total number of strings of length < = 4 using n terminal symbols exceeds 300, then n must be at least
 (a) 2
 (b) 3
 (c) 4
 (d) 5.
- (iv) A positive integer m when written in binary notation (with no leading zeroes) has a length of 21 binary digits. When m is written in decimal notation (with no leading zeroes), its length will be exactly n decimal digits, where n is

 (a) 4
 (b) 5
 (c) 6
 (d) 7.
- (v) The Pumping Lemma for Context-Free Languages can be used to prove that a given language L
 (a) is not Type 0
 (b) is not Type 1
 (c) is not Type 2
 (d) is not Type 3.

CSEN 5201

4

CSEN 5201

1

M.TECH/CSE/2ND SEM/CSEN 5201/2017

- (vi) A machine M has been designed that, given a positive integer n as input, accepts n if and only if n is a perfect square. Then which one of the following alternatives is false?
 - (a) M cannot be a deterministic finite state acceptor (dfsa)
 - (b) M cannot be a deterministic pushdown acceptor (dpda)
 - (c) M cannot be a non-deterministic pushdown acceptor (ndpda)
 - (d) M cannot be a Turing machine.
- (vii) If the original nondeterministic finite state automata(ndfsa) has n states, the corresponding deterministic finite state automata (dfsa) cannot have
 (a) more than n states
 (b) more than 2n states

(a) more than n states (c) more than 2ⁿ states (b) more than 2n states(d) more than (n-1) states.

(viii) Which one of the following languages cannot be accepted by a nondeterministic pushdown acceptor (ndpda)?

 $\begin{array}{ll} (a) \{0^m 1^n | 0 < m, 0 < n \} \\ (b) \{0^m 1^n 0^m | 0 < m, 0 < n \} \\ (c) \{0^m 1^m 0^m | 0 < m \} \\ (d) \{0^m 1^n 0^r | 0 < m, 0 < n, 0 < r \}. \end{array}$

(ix) Which of the following pairs of machines given below *do not* have equal computing power?

(a) Deterministic and Nondeterministic finite state automata

(b) Deterministic and Nondeterministic pushdown automata

(c) Deterministic and Nondeterministic Turing Machine

- (d) Multi tape Turing machine and Universal Turing machine.
- (x) We are supplied as input the state tables of two deterministic finite state acceptors (dfsas) M₁ and M₂. The input alphabet is { 0, 1 }. We want to find out whether the languages L(M₁) and L(M₂) are identical sets, i.e., whether they contain exactly the same strings. Then which statement below is true?
 - (a) There is a dfsa that will solve the problem.
 - (b) There is an ndpda that will solve the problem but not a dfsa.
 - (c) There is a Turing machine that will solve the problem but not an ndpda.
 - (d) There is no effective procedure for solving the problem.

Group – B

2. Consider the set of strings L_1 on the alphabet {0, 1} that contains *Even* number of 0's. Consider another set of strings L_2 on the alphabet {0, 1} that contains *Odd* number of 1's.

M.TECH/CSE/2ND SEM/CSEN 5201/2017

- (i) Design a deterministic finite state acceptor (dfsa) M_1 that will accept $L_1 \cap L_2$. Show both the state table and the state transition diagram of M_1 .
- (ii) Explain the design in brief with the help of suitable examples.

(8 + 4) = 12

3. (a) A non-deterministic finite state acceptor (ndfsa) M_1 has the state table shown below. S is the start state, and B and C are goal states. Convert M_1 to an equivalent deterministic finite state acceptor (dfsa) M_2 and clearly mark the start and goal states.

0	1
B,C	S,A
A,C	
	Α
С	С
	0 B,C A,C C

(b) Minimize the number of states in M_2 designed above and get a reduced dfsa M_3 .

8 + 4 = 12

Group – C

- 4.(a) Construct a non-deterministic finite state acceptor (ndfsa) M on the input alphabet { 0, 1, 2 } that accepts a string α if and only if α is contained in the regular expression $0^*1^*2^*$.
- (b) Construct a non-deterministic finite state acceptor (ndfsa) N on the input alphabet { 0, 1, 2 } that accepts a string α if and only if α is *not* contained in the regular expression (01 + 2)*.

5 + 7 = 12

- 5.(a) Use the Pumping Lemma for Regular Languages, to show that the language L = { $0^m 1^n 0^m 1^n | m > 5, n > 10$ } is not regular.
- (b) Prove that the Regular Languages are closed under union, intersection, concatenation and star closure operation.

6 + 6 = 12

Group - D

6.(a) When is a Type 2 (context-free) grammar said to be ambiguous? Consider the grammar G = (V, T, S, P) where $V = \{S, A, B, 0, 1, 2, 3, 4\}$,