B.TECH/BT/CE/EE/ME/4TH SEM/MATH 2002/2017

(b) Find the value of the constant C such that f(x) = Cx(1-x), $0 < x \le 1$ = 0, elsewhere

is a possible density function and compute $P(X > \frac{1}{2})$. Also find E(X).

$$6 + 6 = 12$$

Group - E

- 8. (a) The distribution of the number of road accidents per day in a city is Poisson with mean 4. Find the approximate number of days out of 100 days where there will be
 - (i) no accident.
 - (ii) at least 2 accidents.
 - (iii) at most 3 accidents.

(b) The expenditure of 1000 families is given below:

The emperior of 1000 lamines is given solow.							
Expenditure(₹):	40-59	60-79	80-99	100-119	120-139		
No of Families:	50	?	500	?	50		

The median and mean for the distribution are both $\stackrel{?}{\stackrel{?}{\sim}}$ 87.50. Calculate the missing frequencies.

$$6 + (2 + 2 + 2) = 12$$

9. (a) Calculate the mean, median and mode of the following frequency distribution

alba i b a do ii							
Marks:		10-19	20-29	30-39	40-49	50-59	60-69
Frequer	icies:	8	11	15	17	17	7

(b) From the following data, obtain the line of regression of γ on χ

9							=	
Sales (<i>X</i>):	91	97	108	121	67	124	51	73
Purchases (Y):	71	75	69	97	70	91	39	61

$$6 + 6 = 12$$

B.TECH/BT/CE/EE/ME/4TH SEM/MATH 2002/2017

NUMERICAL & STATISTICAL METHODS (MATH 2002)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

 $10 \times 1 = 10$

- (i) Newton-Raphson method is also known as
 - (a) method of chords

(b) method of tangents

(c) method of arcs

- (d) none of these.
- ii) Which of the following relation is valid?
 - (a) $\Delta = 1 E$

(b) $\nabla = 1 - E^{-1}$

(c) $\Delta \cdot \nabla = \Delta - \nabla$

- (d) none of these.
- (iii) A matrix can be factorized into lower and upper triangular matrix if all the principal minors of the matrix are
 - (a) singular

(b) non-singular

(c) zero

- (d) none of these.
- (iv) If the interval of differencing is unity and $f(x) = ax^2$ (a is constant) which one of the following is wrong?
 - (a) $\Delta f(x) = a(2x+1)$

(b) $\Delta^2 f(x) = 2a$

(c) $\Delta^3 f(x) = 2$

- (d) $\Delta^4 f(x) = 0$
- (v) If f(x) is defined at (n + 1) distinct points then degree of Lagrangian function is
 - (a) exactly (n + 1)

(b) at most n

(c) exactly (n-1)

- (d) 0
- (vi) The median of first (2n+1) natural numbers is
 - (a) *n*
- (b) (n+1)
- (c) (n+2)
- (d) none of these.

B.TECH/BT/CE/EE/ME/4TH SEM/MATH 2002/2017

(vii) The expected value of the product of points on two dice, both tossed simultaneously is

(b) $\frac{2}{7}$ (c) $\frac{4}{49}$

(viii) A random variable *X* has the following probability density function:

$$f(x) = \begin{cases} \frac{1}{4}, & -2 < x < 2\\ 0, & elesewhere \end{cases}$$

then P(2X + 3 > 5) is

(a) $\frac{1}{2}$

(d) 1

What is the probability that a leap year selected at random, will contain 53 saturdays

(a) $\frac{1}{7}$

(b) $\frac{4}{7}$ (c) $\frac{3}{7}$

(d) $\frac{2}{7}$

If $b_{xy} = -0.4$ and $b_{yx} = -0.9$, then the correlation coefficient between x and y (r_{xy}) is

(a) 0.36

MATH 2002

(b) -0.6

(c) 0.6

(d) -0.06

Group - B

- Find a positive real root of the equation $e^x = 2x + 1$ by Newton-2. (a) Raphson method correct to five significant figures.
 - Solve the following system of linear equations, correct to 3 decimal places, by Gauss Siedel method.

$$x + 10y + z = 20.08$$

10x + y - z = 11.19

-x + v + 10z = 35.61

6 + 6 = 12

- Find the smallest positive root of the equation $xe^x 1 = 0$, correct to 3 significant figures using bisection method.
 - Use Gauss Elimination method to solve the following system of equations.

$$5x - y = 9$$
$$-x + 5y - z = 4$$
$$-y + 5z = -6$$

6 + 6 = 12

MATH 2002

Group - C

4. (a) Compute f(0.29) by Newton's backward difference interpolation formula from the following table.

	х	0.20	0.22	0.24	0.26	0.28	0.30
ĺ	f(x)	1.6596	1.6698	1.6804	1.6912	1.7024	1.7139

Compute the value of π from the formula $\frac{\pi}{4} = \int_{0}^{1} \frac{1}{1+x^2} dx$ using

Trapezoidal rule taking the 10 sub-interval. Can you calculate the absolute error committed from this?

6 + 6 = 12

- 5. (a) Find the value of v(0.4) using Runge-Kutta method of fourth order taking h = 0.2, given that $\frac{dy}{dx} = \sqrt{(x^2 + y)}$, and y(0) = 0.8.
 - Find the equation of the cubic curve that passes through the points (-1,-8), (0, 3), (2,1) and (3,2) using Lagrange's interpolation formula.

$$6 + 6 = 12$$

Group - D

- Two persons A and B throw alternatively a pair of dice. A wins if he throws 6 before B throws 7 and B wins if he throws 7 before A throws 6. If A begins, find the probability of his winning.
 - Suppose that there is a chance for newly constructed house to collapse whether the design is faulty or not. The chance that the design is faulty is 10%. The chance that the house collapse if the design is faulty is 95% and otherwise it is 45%. It is seen that the house collapsed. What is the probability that it is due to faulty design?

$$6 + 6 = 12$$

The probability density function of a continuous random variable *X* is given by

$$f(x) = \begin{cases} \frac{x}{2}, & 0 < x \le 1\\ \frac{1}{2}, & 1 < x \le 2\\ \frac{3-x}{2}, & 2 < x \le 3 \end{cases}$$

Find the mean and variance of *X*.