# M.TECH/VLSI/1<sup>ST</sup> SEM /VLSI 5103/2015 2015

# Microelectronics Technology and IC Fabrication (VLSI 5103)

Time Allotted: 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

|              |                                                                                                                                                                                                   | (Multiple Chr            | Group - A                                           |                       |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------|-----------------------|--|
| 1            | Choose the corr                                                                                                                                                                                   |                          | oice Type Questions)                                | 10 x 1=10             |  |
|              | Choose the correct alternatives for the following: 10 x (i) The active components in an Integrated Circuit are                                                                                    |                          |                                                     |                       |  |
|              | (a) resistors                                                                                                                                                                                     | (b) capacitors           | (c) transistors                                     | (d) all of the above. |  |
|              | (ii) Electronic grade silicon has a purity level at least of about                                                                                                                                |                          |                                                     |                       |  |
|              | (a) 98%                                                                                                                                                                                           | (b) 99%                  | (c) 99.9999%                                        | (d) 99.999999%.       |  |
|              |                                                                                                                                                                                                   | tching occurs in         |                                                     |                       |  |
|              | (a) all directions                                                                                                                                                                                |                          | (b) in a particular direction                       |                       |  |
|              | (c) in two directions                                                                                                                                                                             |                          | (d) none of the above.                              |                       |  |
|              | (iv) Optical mas                                                                                                                                                                                  | sking is used for        |                                                     |                       |  |
|              | (a) patte                                                                                                                                                                                         | ern transfer             | (b) protection                                      |                       |  |
|              | (c) cleaning                                                                                                                                                                                      |                          | (d) none of the above.                              |                       |  |
|              | (v) The liquid s                                                                                                                                                                                  | ource employed for ba    | sic diffusion of Phosphoro                          | us in Silicon is      |  |
|              | (a) P <sub>2</sub> O <sub>5</sub>                                                                                                                                                                 |                          | (b) PH <sub>3</sub>                                 |                       |  |
|              | (c) POCI                                                                                                                                                                                          | 3                        | (d) PH <sub>4</sub> .                               |                       |  |
| AND MAKE THE | (vi) For deposition of SiO <sub>2</sub> over polysilicon or in order to obtain excellent SiO <sub>2</sub> film uniformity which of the of the following chemical reactions are normally employed? |                          |                                                     |                       |  |
|              | (a) Oxygen reduction of SiH <sub>4</sub> at 450°C                                                                                                                                                 |                          |                                                     |                       |  |
|              | (b) Oxygen reduction of PH <sub>3</sub> at 450°C                                                                                                                                                  |                          |                                                     |                       |  |
|              | (c) Decomposition of Si(OC <sub>2</sub> H <sub>5</sub> ) <sub>4</sub> Tetraethylorthosilicate at 700°C                                                                                            |                          |                                                     |                       |  |
|              | (d) Read                                                                                                                                                                                          | ting dichlorosilane, SiC | l <sub>2</sub> H <sub>2</sub> with nitrous oxide at | 900°C.                |  |
|              | (vii) VPE stand                                                                                                                                                                                   | s for                    |                                                     |                       |  |
|              | (a) vapo                                                                                                                                                                                          | our phase epitaxy        | (b) vacuum ph                                       |                       |  |
|              |                                                                                                                                                                                                   | ur phase etching         | (d) none of the                                     | above.                |  |
|              |                                                                                                                                                                                                   |                          |                                                     |                       |  |

|                                      | st is acom                                |                            |                                                                       |  |
|--------------------------------------|-------------------------------------------|----------------------------|-----------------------------------------------------------------------|--|
| (a) radiation-sensitive              |                                           | (b) radiation              | (b) radiation-insensitive                                             |  |
| (c) radia                            | ative                                     | (d) non-radia              | (d) non-radiative .                                                   |  |
| (ix) Sputtering                      | is a proce                                | ess                        |                                                                       |  |
| (a) physical                         | (b) chemical                              | (c) mechanical             | (d) none of the above.                                                |  |
| (x) Metallizatio                     | n is used for                             |                            |                                                                       |  |
| (a) interconnection                  |                                           | (b) packaging              |                                                                       |  |
| (c) prote                            |                                           | (d) all of the above.      |                                                                       |  |
|                                      |                                           | Group - B                  |                                                                       |  |
| 2.(a) Mention the                    | uses of SiO <sub>2</sub> in the IC fa     | brication industry.        |                                                                       |  |
| (b) Differentiate                    | between dry and wet                       | oxidation. Write down t    | the corresponding chemical                                            |  |
| equations. Exp                       | plain with a suitable so                  |                            | al horizontal tube oxidation                                          |  |
| furnace set-up                       |                                           |                            | 4+(1+2+5) = 12                                                        |  |
| 2 (a) Dacariba tui                   | th mitable ashamatic                      | diagram the processes      | carried out for growth of                                             |  |
|                                      | on float zone techniqu                    |                            | carried out for growdr or                                             |  |
| in production                        | on of very pure single                    |                            | nique & Czochralski method ss the neutron irradiation horous.  6+6=12 |  |
|                                      |                                           | Group – C                  |                                                                       |  |
| 4.(a) What is wet of wet chemical et |                                           | at are the characteristics | of an ideal etchant used for                                          |  |
| (b) Discuss Buffe                    | ered Oxide Etching, its                   | advantages and limitation  | ons. (1+5)+6=12                                                       |  |
|                                      |                                           | nguish between vacancy     | e schematic diagram of an y diffusion and interstitial                |  |
|                                      |                                           |                            | 7 1/2 1/60                                                            |  |
|                                      | s diffusion equation? I dopant diffusion. | Find the solution to the F | ick's diffusion equation for                                          |  |

## M.TECH/VLSI/1ST SEM /VLSI 5103/2015

#### Group - D

- 6.(a) State the advantages and disadvantages of ion-implantation.
  - (b) Use the LSS theory to calculate the implant dose required to give a peak dopant concentration of  $5 \times 10^{18}$  boron atoms cm<sup>-3</sup> in an n-type Si, doped with  $10^{15}$  phosphorous atoms cm<sup>-3</sup>when boron is implanted at 200 keV into Si. Given the lateral straggle for boron ions at 200 keV is 0.086 micron.

7+5=12

- 7.(a) Write down the chemical equations governing the deposition of  $SiO_2$  and  $Si_3N_4$  from (i) silane (ii) dichlorosilane
  - (b) What is sputtering? How is it advantageous as compared to the different evaporation techniques used in film depositions?

8+4=12

### Group - E

- 8.(a) List the properties that a material must have to be useful as an interconnect.
  - (b) What do you mean by aluminium junction spiking? Discuss how it can be overcome.

4+(5+3)=12

- 9.(a) Distinguish between CMOS & BiCMOS technologies. Draw the cross sectional structure of a CMOS inverter.
- (b) Discuss the fabrication sequences of Ga As MESFET. Mention some important features of Ga As MESFET.

8+4=12