

M. [.] Disc	Tech. (\ Sinline	/LSI)	Semester	r - FCF	Exami Microe	nation.	2014	/1 :	Session	:	2014-15
Paper	r Code :	VL	SI 5102			Paper	Name :	D	iqital IC Desi	gn.	
Time	Allotted	: 3 hr	S			·			5	0	Full Marks : 70
			Figur	es o	ut of th	e right	margin i	ina	licate full ma	rks.	
			Can	didat	tes are	require	ed to ans	SW	er Group A a	nd	
any 5 (tive) trom Group B to E, taking <u>at least one</u> from each group.											
	Canc	lidates	s are requ	irea	to give	answe	er in theil	r o	wn words as	tar	as practicable.
1. (i)	Choose Value o (a) 0 (c) 1	the co f "Lam .25 μn 1 μm) prrect alter bda" in 0.5 n	Mul i nativ δμm	t iple Ch e for th Technol	e follow oice Ty e follow ogy is (b) (d)	A pe Quest /ing: 0.5 μm 2 μm	ior	ns)		10 x 1=10
(ii)	Pentium (a) (c)	n 4 chi LSI UL	p belongs t SI	o be	low cat	egory (b) (d)	VLSI GSI				
(iii)	Most po (a) (c)	opular Gol Alur	interconne d ninium	ect m	aterial i	S	(b) 5 (d) 5	5ilv ilic	er on Dioxide		
(iv)	For a Sta (a) (c)	andaro Heig Both	d Cell Layou ht is fixed Height an	ut d Wi	dth are	fixed	(b) (d)		Width is fixed None of Abov	e	
(v)	LUT bel (a) (c)	ongs to Gat Ful	o below ty e Array l Custom	oes o	of Circuit	ts (b) (d)	CPLD FPGA				
(vi)	NMOS 1 (a) (c)	Fransis Resist Open	tor in linea tance Circuit	ır reg	gion can	be moo (b) Cu (d) V	delled as urrent So oltage So	uro our	ce ce		
(vii)	With de (a) (c)	crease Incre Rem	e of V _{dd} , the eases ains Same	e Del	ay of an	CMOS (b) D (d) B	inverter ecreases ecomes l	nfi	nite		
(viii)	Minimu (a) (c)	m Nur 12 14	nber of Tra	ansist	tors in C	MOS lo: (b) (d) Pa	gic Y = Al 6 10 ae 1	BC	+ DE is		

HERITAGE INSTITUTE OF TECHNOLOGY

: 2014-15..... ...M. Tech. (VLSI) Semester - I Examination. 2014... Session : ...M.Tech ECE Microelectronics & VLSI Design..... Discipline Paper Code : ...VLSI 5102..... Paper Name : Digital IC Design..... Most Manual Effort is needed in below VLSI Methodology (ix) (a) FPGA (b) CPLD Std Cell Based Semi Custom (c) (d) **Full Custom** (x) 0.7 Technology Scaling enables Layout area scaling of 0.7 (a) (b) 0.5 (c) 0.4 (d) 0.6 Group - B 2.(a) Draw Circuit Diagram of a D-Latch using CMOS Transmission Gate (TG). (b) Draw Circuit Diagram of a Negative Edge Triggered D-Flip Flop using D-Latch. (c) Draw Circuit Diagram of 2 input XOR gate using CMOS Logic. (d) Draw Circuit Diagram of 2 input XOR gate using CMOS Transmission Gate (TG). 3+3+3+3=12 Draw Layout of CMOS inverter using Standard Cell Layout Topology and show all 3.(a) the layers. (b) What is the difference between "Micron based Design Rule" and "Lambda Based Design Rule"? (c) Draw schematic and Stick Diagram of 2 input NOR gate 4+3+5=12Group - C 4.(a) Draw Flow Diagram of Physical Layout Automation. (b) For below Channel Routing Problem, draw Horizontal Constraint Graph (HCG)

and Vertical Constraint Graph (VCG) Terminal Connection is as follows: 1 1 1 2 2 5 6 3 0 4 0 ----- Upper Boundary 2 5 0 5 5 3 3 0 6 0 4 ----- Lower Boundary 0 means no Connection.

Assume HV Layer (V = Metal 1, H = Metal 2)

(c) Provide Optimum Channel Routing Solution for above case using Left Edge Algorithm. 2

HERITAGE INSTITUTE OF TECHNOLOGY

М.	Tech. (VLSI) Semester - I Examination. 2014 Session : 2014-15	
Disc	cipline :M.Tech ECE Microelectronics & VLSI Design	
Pape	r Code :VLSI 5102 Paper Name : Digital IC Design	
5.(a)	Solve Euler Path Algorithm for the function f = C(A + B) ! (! Means Bar).	
(b)	Write problem formulation of Global Routing using Steiner Tree.	
(c)	Describe difference between Behavioural and Structural Model of VHDL coding using an example	4+4+4= 12
6.(a)	Group - D Draw flow diagram of High Level Synthesis.	
(b)	Draw flow diagram of Logic Synthesis.	
(c)	Draw BDD Diagram for function f = abc + ab'c + a'bc' + a'b'c' using ordering of a \leq b \leq c.	
(d)	Create ROBDD Diagram and corresponding optimized Boolean expression.	3+3+3+3=12
7.(a)	Draw Flow Diagram of Physical Layout Automation.	
(b)	For Floor planning problem, what are inputs, outputs and Objective (Cost) function?	
(c)	Explain Lee Algorithm of Maze Routing.	4+4+4= 12
8.(a)	Group - E What are key limitations of pseudo-NMOS logic family?	
(b)	Why CMOS Transmission gate is used instead of NMOS pass transistor logic.	
(c)	Draw Circuit Diagram of a positive edge triggered D-Flip Flop.	
(d)	Draw Circuit Diagram of 8 input OR gate using Domino Circuit.	2+2+4+4=12
9.	Write short notes on the following: a) Left Edge Algorithm for Detailed Routing b) FPGA c) I-V Characteristics of MOS Transistor	4+4+4=12

HERITAGE INSTITUTE OF TECHNOLOGY

...M. Tech. (VLSI) Semester - I Examination. 2014... Session : 2014-15..... Discipline : ...M.Tech ECE Microelectronics & VLSI Design.....

Paper Code : ...VLSI 5102..... Paper Name : Digital IC Design......