: 2014-2015

Session

HERITAGE INSTITUTE OF TECHNOLOGY

1st Semester M.TECH Examination. 2014

		Discipline	: M.TECH COM	MUNICATION	N (ECE)	
Paper Code : ECEN5102			Paper Name :Advanced DSP			
Time Allotted : 3 hrs			Full Marks : 70			
		Figures out o	of the right margir	n indicate full	marks.	
Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.						
Candidates are required to give answer in their own words as far as practicable.						
1. (i)	(a) Causal, linear a	ct alternative for system describe and time- varia	ed by $y(n)=x(n^2)$ is	, non-linear an	d time –variant and time-variant	10 x 1=10
(ii)	The ROC of seque (a) z >1 (c) no ROC	nce x(n)= u(–n)	(b) z <1 (d) -1< z <1			
(iii)	The system descri has y(n)=0 for n<0 (a) 2		erence equation y nen y(2) will be (c) 0	(n)-2y(n-1)+y(ı (d) ∞	n-2) = x(n)-x(n-1)	
(iv)	In an N point se multiplications us (a) 64 and 80 (c) 64 and 32	ing Radix -2FFT	6), the total num are (b) 80 and 6 (d) 24 and 12	4	ex additions and	
(v)	The convolution of (a) 5 (c) 1	of u(n) and u(n-	4) at n=5 is (b) 2 (d) 0			
(vi)	by a factor of 2 spectrum of the s	. The spectrur signal	1, is applied to a d	signal will be	identical to the	
	(a) x(n)	(b) x(0.5n) (c) x(2)	n) (d) x(4n)	
(vii)	If X(f) represents symmetric in time (a) complex		ransform of a sigi (c) real		is real and odd	

HERITAGE INSTITUTE OF TECHNOLOGY

1st Semester M.TECH Examination. 2014

Session

: 2014-2015

Discipline

: M.TECH COMMUNICATION (ECE)

Paper Code : ECEN5102 Paper Name :Advanced DSP

- (viii) The DFT of the sequence $x(n) = \delta(n-n_0)$ is
 - (a) 1
- (b) $e^{j2\pi kno}$
- (c) $e^{-j2\pi kno/N}$
- (d) $e^{j2\pi kno/N}$
- (ix) If $h(n) = -5^n u(-n-1)$ then H(z) is equal to
 - (a) -z/z-5
- (b) z/z-5
- (c) $-z^{-1}/z-5$
- (d) $z^{-1}/z-5$
- (x) If $X(z) = z^{-1}(1-z^{-4})/(4(1-z^{-1})^2)$ then its final value is
 - (a) 1/4
- (b) 0
- (c) 1
- (d) ∞

Group - B

- 2.(a) Write down the condition of energy and power signal. Determine the energy and power of the signal $x(n) = (1/4)^n u(n)$.
- (b) Obtain the value of following summation $\sum \delta(n-4)\sin(2n-2)$. Determine whether the sequence $x(n)=a^n u(-n-1)$ is causal or not.
- (c) If the Fourier transform of x(t) is $X(j\omega)$ then, prove that $x(at)=(1/|a|) X(j\omega/a)$.
- (d) State the Weiner-Khinchine theorem.

4+3+3+2=12

- 3.(a) What is 'Z' transform & how do you define ROC?
- (b) Find out the Z transform of $x(n)=na^{n}cos(\omega n)u(n)$.
- (c) What is inverse 'Z' transform? Find out the inverse 'Z' transform of $X(z) = z / (3z^2 4z + 1)$, with ROC (i) |z| < 1/3 (ii) |z| > 1.
- 2 + 4 + 6 = 12

Group - C

- 4. A linear time invariant system is described by the following difference equation y(n) = ay(n-1) + bx(n) where 0 < a < 1.
- (a) Determine the impulse response h(n) of the system.
- (b) Determine the frequency response $H(\omega)$ of the system
- (c) Choose the parameter 'b' so that the maximum value of $H(\omega)$ is unity.
- (d) Determine the output of the system to the input signal $x(n) = 12 \sin(\pi n/2)$.

HERITAGE INSTITUTE OF TECHNOLOGY

1st Semester M.TECH Examination. 2014 Session : 2014-2015

Discipline : M.TECH COMMUNICATION (ECE)

Paper Code : ECEN5102 Paper Name :Advanced DSP

5.(a) State invertibility of linear time invariant system.

(b) Determine the inverse of the system with impulse response $h(n) = \delta(n) - \delta(n-1)$.

(c) What is the input signal x(n) that will generate the output sequence $y(n) = \{1, 5, 10, 11, 8, 4, 1\}$ for a system with impulse response $h(n) = \{1, 2, 1\}$.

(d) What do you mean by Homomorphic deconvolution.

2+3+5+2=12

Group - D

6.(a) What is FFT? How do you get the Radix 2 FFT algorithm?

(b) Derive the expression of DIF algorithm.

(c) Determine 8 point DFT of $x(n) = \{1, 2, 3\}$ using butterfly structure.

2 + 3 + 7 = 12

7.(a) What are the advantages and disadvantages of FIR filter over IIR filter.

(b) Design a low pass FIR filter (using Hamming window technique) with 11 filter coefficients for the following specifications.

Pass band frequency edge = 0.25 kHz

Sampling frequency = 1 kHz

4+8=12

Group - E

8.(a) Explain sampling rate conversion by a rational factor 1/D.

(6) + (6)

= 12

(b) How can you design a filter for implementation of sampling rate conversion?

9. Write short notes on:

(a) Discrete Wavelet transform

(b) Bi-orthogonal decomposition

(2x6)=12