CONFIDENTIAL

HERITAGE INSTITUTE OF TECHNOLOGY

Discipline : Computer Science.

M.Tech First Semester Examination. 2014... Session :...2014-15...

Paper Code : MATH5102. Paper Name : Advanced Discrete Mathematics Time Allotted : 3 hrs Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

1. (i)	Group – A (Multiple Choice Type Questions) Choose the correct alternative for the following: Every integer is relatively prime to								10 x1	
(')	(a) 1 (c) 2	(b) ((d) 3								
(ii)	Let <i>n</i> be an even positive integer. Th (a) 1 (c) 3	en gcd (b) <i>n</i> (d) 2	(n, n -	+ 2) =	=					
(iii)	The remainder obtained when 7 ¹⁷ is (a) 17 (c) 7	(b) 0	divided by 17 is (b) 0 (d) 11							
(iv)	Let S be a set containing n elements. (a) 2n (c) 2 ⁿ									
(v)	How many committees of 4 people c (a) 3024 (c) 15	an be formed from 9 people? (b) 126 (d) 24								
(vi)	In the set of integers the if $a - b = positive integer$. Then (a) reflexive (c) transitive	ρ is (b) a	relation $ ho$ is defined by $a ho b$ hold is (b) antisymmetric (d) symmetric							
(vii)	Consider the PO set $S = \{1, 2, 3, 4, 6$ elements of S is/are (a) 1 (c) 2	, 9} wit (b) (d)	:h resp 1, 2 1, 2,		o divided re	elation.	. The m	inimal		

(1=10

HERITAGE INSTITUTE OF TECHNOLOGY

M.Tech First Semester Examination, 2014... Session :...2014-15... Discipline : Computer Science. Paper Code : MATH5102. Paper Name : Advanced Discrete Mathematics The chromatic number of a graph containing an odd circuit is (viii) (a) 3 (b) 2 (c) greater than or equal to 3 (d) None of the above (ix) Kuratowski's two graphs are (a) Disconnected graphs (b) Trees (c) Planar graphs (d) Regular Graphs If $P_n(x)$ be the chromatic polynomial a graph G, then $P_n(x) = 0$ if (x) (a) $x = \chi(G)$ (b) $x > \chi(G)$ (c) $x < \chi(G)$ (d) None of the above

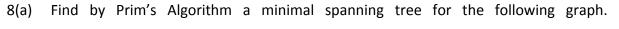
Group - B

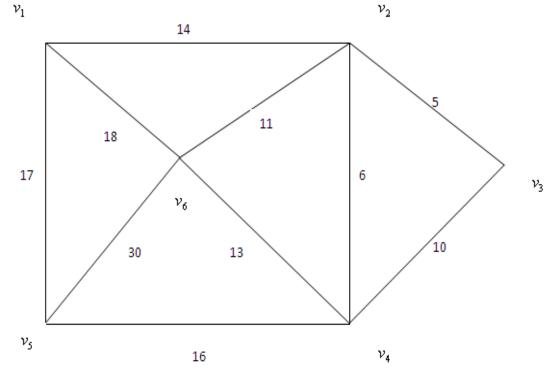
2.(a) Let ρ be a relation on the set of all complex numbers, defined by " $(a + ib)\rho(c + id)$ if and only if $a \le c$ and $b \le d$ " for $(a + ib), (c + id) \in C$. Show that < C, $\rho >$ is a PO set.

Determine whether the following set S with the relation ρ is a PO set. (b)

 $S = \{a, b, c, d\}.$

 $\rho = \{(a, a), (b, b), (c, c), (a, c), (c, d), (c, e), (a, d), (d, d), (a, e), (b, c), (b, d), (b, e), (e, e)\}$ If it is a PO set, draw the corresponding Hasse diagram and find the maximal and minimal elements.


- 3.(a) Define distributive lattice. In a distributive lattice $\langle L, \Lambda, V \rangle$ prove that $a, b, c \in L$, $a \wedge b = a \wedge c$ and $a \vee b = a \vee c \Longrightarrow b = c$
- Show that $\langle S, \leq \rangle$ is a lattice where S is the set of positive divisors of 72 and \leq is (b) the relation on S defined by " $a \leq b$ if and only if a is a divisor of b" for $a, b \in S$. Is it complemented? Justify your answer. 5+7=12


Group - C

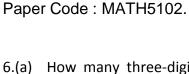
- 4.(a) Solve in integers the following equation 123x + 360y = 99. Show your calculations in detail.
- (b) If gcd(a, b) = 1 prove that gcd(a + b, a - b) = 1 or 2. 6 +6= 12
- 5.(a) Show that $3^{302} \equiv 4 \pmod{5}$. State any theorem that you use.
- Find the remainder obtained upon dividing the sum (b) $1! + 2! + 3! + 4! + 5! + 6! + \dots + 50!$ by 15. Show your calculations. 7+5 = 12

5+7=12

Page 3

- Prove Pascal's Identity : C(n,r) = C(n-1,r) + C(n-1,r-1). 7(a)
- State the Pigeonhole Principle. If 11 numbers are chosen from the set {1, 2, 3, 4, 5, 6, (b) 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, then prove that one of them must be a multiple of another. 6+6=12

Group - E

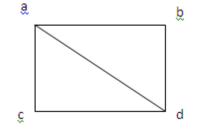

- where $a_0 = 10$ and $a_1 = 41$. Show the calculation in detail.
- digits? (Here we are using all digits 0 through 9.) Show your calculations in detail.
- (b) Solve the recurrence relation $a_n - 7a_{n-1} + 10a_{n-2} = 0$ for $n \ge 2$
- 6.(a) How many three-digit numbers are there which are even and have no repeated
- Group D
- M.Tech First Semester Examination. 2014... Session : ...2014-15...

HERITAGE INSTITUTE OF TECHNOLOGY

Discipline : Computer Science.

Paper Name : Advanced Discrete Mathematics

6+6=12


:...2014-15...

HERITAGE INSTITUTE OF TECHNOLOGY

Discipline : Computer Science.

M.Tech First Semester Examination. 2014... Session

Paper Code : MATH5102. Paper Name : Advanced Discrete Mathematics
(b) Using Decomposition theorem find the chromatic polynomial of the following graph and hence find the chromatic number of the graph.

9.(a) State Hall's Marriage Theorem. C_9 is a cycle (*i.e.*, a circular chain) with the nine vertices *a*, *b*, *c*, *d*, *e*, *f*, *g*, *h*, *i*. How many distinct maximal matching of size four in C_9 contain the edge *ab*? Give reasons for your answer.

(b) Prove that $e \ge \frac{3f}{2}$ and $e \le 3n-6$ for any simple connected planar graph with *n* vertices and with *e* (*e* > 2) edges and *f* regions.

6+ 6 = 12

6+ 6= 12

In the first state of the state