- (b) Draw the data flow graph for the following set of instructions:
 - X = A + B; Y = X / B Z = A * X M = Z - Y N = Z * XP = M / N
- (c) Explain the scatter instruction in a vector processor. What is it used for?

Group – E

- 8. (a) Present the matrix multiplication algorithm on a SIMD architecture (using *n* no. of PEs).
 - (b) Discussion the time complexity of the operation above.
 - (c) Briefly explain how a sparse matrix can be efficiently handled using a vector processor.
 4+4+4 = 12
- 9. Write short notes on any three of the following: 3x4 = 12
 a) Cache coherency
 - a) Cache coneren
 - b) NUMA
 - c) Barrel Shifter
 - d) Control hazards in a pipeline.

Advanced Computer Architecture (CSEN5105)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A

(Multiple Choice Type Questions)

1. Choose the correct alternative answer for each of the following questions:

10 x 1=10

- (i) Which of the following types of instructions are useful in handling conditional statements in vector processing applications?
 - (a) Vector Scalar instruction (b) Masking instruction
 - (c) Vector memory instruction (d) None of these.

(ii) The performance of a pipelined processor suffers if

- (a) the pipeline stages have different delay
- (b) consecutive instructions are dependent on each other
- (c) the pipeline stages share hardware resources
- (d) all of the above.
- (iii) For two instructions I and J, a WAR hazard can occur, if
 - (a) $R(I) \cap D(J) \neq \emptyset$ (b) $R(I) \cap R(J) \neq \emptyset$
 - (c) $D(I) \cap R(J) \neq \emptyset$ (d) none of (a), (b), (c) is true.

(iv) GPU processing is an example of (a) SIMD (b) MISD (c) MIMD (d) SISD.

(v) Prefetching is a solution for

 (a) Data hazard
 (b) Structural hazard
 (c) Control hazard
 (d) None of these.

(vi) A 4-ary 3-cube hypercube architecture has

- (a) 3 dimensions with 4 nodes along each dimension
- (b) 4 dimensions with 3 nodes along each dimension
- (c) both (a) and (b) are possible configurations
- (d) none of (a) and (b) are possible configurations.

CSEN 5105

Advanced Computer Architecture (CSEN5105)

. . . .

(vii)	An example of a recirculating network is						
	(a) 3 cube network	(b) Ring netw	ork				
	(c) Tree network	(d) Mesh netw	vork.				
(viii)	In general, a 64 input Omega network requiresstages of 2X2 switches.						
	(a) 6 (b) 64	(c) 8	(d) 7.				
(ix)	CC-NUMA stands for						
	(a) Cache coherent NUMA	(b) Cyclical Co-ordination NUMA					
	(c) Cache Co-ordinated NUM	(d) None	e of the above.				
(x)	Vector stride is required						
	(a) To deal with the length of vectors						

- (b) To find parallelism in vectors
- (c) To access the elements in multidimensional vectors
- (d) To execute non-vector instructions.

Group – B

Perform bitonic sort on the following set of elements (N = 8) and 2. (a) show the result of each stage.

- Explain the concepts of vector stride and strip mining with the help of (b) examples. 6+6 = 12
- Consider the following reservation table 3.

	0	1	2		3	4
S1	Х				Х	
						-
\$2		Х		Х		
52						
			X	X		
S3						

- (a) Determine the initial collision vector.
- (b) Draw the state diagram.
- Find out the greedy cycle and the MAL. (c)

CSEN 5105

Advanced Computer Architecture (CSEN5105)

- (d) What is the minimum achievable latency for the above table? Explain clearly whether it is achieved here.
- (e) Suppose the cycle (1, 3) has to be supported by the corresponding pipeline. What would be the modified reservation table?
 2+2+1+2+5= 12

Group - C

- 4. (a) Draw a ILLIAC IV network (for 16 PEs). How many recirculating stages are required to route a message from PE5 to PE15?
 - (b) Show how the following two matrices can be multiplied using a Boolean cube.

$$\begin{bmatrix} -2 & -1 \\ 4 & -5 \end{bmatrix} \qquad \begin{bmatrix} 3 & 4 \\ 7 & -5 \end{bmatrix} \qquad (4+2)+6 = 12$$

- 5. (a) Draw the diagram of a 8 x 8 Omega NW built with 2 x 2 switching elements.
 - (b) Show the switching setting for routing a message from node 001 to node 100 and from node 011 to node 101 simultaneously. Does blocking exist in this case?
 - (c) Implement the data routing logic of a SIMD architecture to compute $s(k) = \sum_{k=0}^{k} At \text{ for } k = 0, 1, 2...N-1.$

Group - D

- 6. (a) Explain the different types of pipeline hazards.
 - (b) Is it always possible to avoid data hazards using the technique of data forwarding? If yes, justify your answer. If not, present an example instruction sequence where a stall is inevitable.
 - (c) A pipeline consists of k stages. The probability that an instruction would be a branch instruction is p (in a large stream of instructions). The probability of a branch being taken is q. What would be the effective pipeline throughput for this pipeline with the influence of 3+4+5 = 12

CSEN 5105

5+2+5=12

Advanced Computer Architecture (CSEN5105)

branching?

- 7. (a) Develop a 4^2 X 3^2 delta network.
- (b) Draw the data flow graph for the following set of instructions:
 - X = A + BY = X / BZ = A * XM = Z YN = Z * XP = M / N
 - (c) Explain the scatter instruction in a vector processor. What is it used for? 5+5+2 = 12

Group – E

- 8. (a) Present the matrix multiplication algorithm on a SIMD architecture (using n no. of PEs).
 - (b) Discussion the time complexity of the operation above.
 - (c) Briefly explain how a sparse matrix can be efficiently handled using a vector processor.
 4+4+4 = 12
- 9. Write short notes on **any three** of the following:
 - e) Cache coherency
 - f) NUMA
 - g) Barrel Shifter
 - h) Control hazards in a pipeline

3x4 = 12