B.TECH/ME/3RD SEM/MECH 2104/2016

- (viii) Delta iron occurs at temperature of
 (a) room temperature
 (b) above melting point
 (c) between 1400°C to1539°C
 (d) between 910°C to 1400°C.
- (ix) Which of the following constituents of steel is softest and least strong?
 (a) austenite
 (b) perlite
 (c) ferrite
 (d) cementite.
- (x) The hardness of martensite in a steel is a function of

 (a) C content
 (b) cooling rate
 (c) Ni content
 (d) nose location.

Group - B

- 2. (a) What do you mean by "Miller Indices"? Explain the procedure for finding Miller Indices.
 - (b) Obtain the Miller Indices of a plane whose intercepts are 'a', 'b/2' and 3c on x, y and z axes respectively in a simple cubic unit cell.

6 + 6 = 12

- 3. (a) What do you understand by the term "point defects"? Name their types with the corresponding sketches.
 - (b) Mention the differences between the slip and twinning mechanism for plastic deformation of metals.

Group - C

- 4. (a) Define and explain Annealing process and state its objectives.
 - (b) What are the characteristic properties of tool steel.

6 + 6 = 12

- 5. (a) Write short notes on perlite, ledeburite and cementite.
 - (b) Name any two ferrous alloys mentioning their compositions, properties and applications.

6 + 6 = 12

Group - D

6. (a) Define fatigue and creep.

MECH 2104

2

B.TECH/ME/3RD SEM/MECH 2104/2016

(b) A tensile stress is to be applied along the long axis of a cylindrical brass rod of 10 mm diameter. Determine the magnitude of the load necessary to produce a 2.4×10^{-3} mm change in diameter assuming that the deformation is entirely elastic. For brass the value for Poisson's ratio is 0.34, and the modulus of elasticity is 97GPa.

4 + 8 = 12

- 7. (a) Mention various factors that affect the mechanical properties of a metal.
 - (b) The following observations were made during a tensile test on a mild steel specimen 40mm in diameter and 200 mm long:
 Elongation with 40 KN load (within limit of proportionality) δl=0.0304 mm,
 Yield point load = 161 KN,
 Maximum load = 242 KN,
 Length of specimen at fracture = 249 mm
 Determine (a) young's modulus of elasticity (b) yield point stress (c) ultimate stress and (d) percentage elongation.

6 + 6 = 12

Group - E

- 8. (a) Define polymerization. Differentiate between the two different types of polymerization.
 - (b) What are the general properties to be considered while polymeric materials are to be used?

6 + 6 = 12

- 9. (a) Define composite. What are the differences between alloy and composite?
 - (b) How corrosion can be prevented?

6 + 6 = 12

MECH 2104

3

B.TECH/ME/3RD SEM/MECH 2104/2016

ENGINEERING MATERIALS (MECH 2104)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choose	e the correct alterna	$10 \times 1 = 10$			
	(i)	The atomic diame (a) $a\sqrt{2}/2$	ter of an FCC cry (b) a√2/4	rstal (lattice parame (c) a√3/4	eter "a") is (d) a/2.	
	(ii)	 Strain hardening improves (a) static tensile strength (c) fatigue life Gibbs phase rule for condensed s pressure is (a) F+P = C+2 (c) F+P = C+1 		(b) steady (d) none of	(b) steady state creep rate (d) none of these.	
	(iii)			d state reaction under constant (b) F+C = P+2 (d) F+1 = C+P.		
	(iv)	(iv) If the radius of an atom in a simple diagonal of the unit cell is (a) $r\sqrt{3}$ (b) $2r\sqrt{3}$ (c)			is 'r', the body (d) 3r/4.	
	(v)	Thermal expansion of materials arises fr(a) strong bonds(b) we(c) thermal vibrations(d) as		ises from (b) weak bonds (d) asymmetry of p	om eak bonds 7mmetry of potential energy.	
	(vi)	Hydrogen bonds are stronger than (a) vander waals bonds (c) ionic bonds		۱ (b) metallic bonds (d) covalent bonds.		
	(vii)	The packing efficiency of a simple cubic crystal with an interstitial atom exactly fitting at the body centre is $(a) 0.52$ (b) 0.68 (c) 0.72 (d) 0.01				
ME	CH 2104	(a) 0.32	(U) U.UO 1	(0) 0.75	(u) 0.91.	