
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Identification of ECG beats from cross-spectrum information aided
learning vector quantization

Saibal Dutta a,⇑, Amitava Chatterjee b, Sugata Munshi b

a Heritage Institute of Technology, Electrical Engineering Department, Kolkata 700 107, India
b Jadavpur University, Electrical Engineering Department, Kolkata 700 032, India

a r t i c l e i n f o

Article history:
Received 15 December 2010
Received in revised form 29 July 2011
Accepted 21 August 2011
Available online 30 August 2011

Keywords:
Heart beat classification
Feature extraction
Cross-correlation
Cross-spectral density
Artificial Neural Network

a b s t r a c t

This work describes the development of a computerized medical diagnostic tool for heart
beat categorization. The main objective is to achieve an accurate, timely detection of cardiac
arrhythmia for providing appropriate medical attention to a patient. The proposed scheme
employs a feature extractor coupled with an Artificial Neural Network (ANN) classifier. The
feature extractor is based on cross-correlation approach, utilizing the cross-spectral density
information in frequency domain. The ANN classifier uses a Learning Vector Quantization
(LVQ) scheme which classifies the ECG beats into three categories: normal beats, Premature
Ventricular Contraction (PVC) beats and other beats. To demonstrate the generalization
capability of the scheme, this classifier is developed utilizing a small training dataset and
then tested with a large testing dataset. Our proposed scheme was employed for 40 bench-
mark ECG files of the MIT/BIH database. The system could produce classification accuracy as
high as 95.24% and could outperform several competing algorithms.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Millions of people around the world are suffering from
some form of cardiovascular disease. Many of them have
witnessed myocardial infarction or heart attack. Myocar-
dial infarction is one of the most common causes of human
death in recent times. American Heart Association (AHA)
recently reported that cardiovascular diseases were the
underlying causes of 1 in every 2.8 deaths in 2008 [1].
World Health Organization (WHO) estimated that by
2030, almost 23.6 million people will die from cardiovas-
cular diseases, mainly from heart disease and stroke [2].
Hence early detection and prevention of cardiovascular
diseases is extremely crucial. The most common and inex-
pensive way to detect the problems in cardiac conditions is
Electrocardiogram (ECG) analysis [3]. The ECG is a non-
invasive test, which effectively presents valuable clinical
information regarding the rate, morphology and regularity
of the heart. Specially, Premature Ventricular Contractions

(PVCs), which are the most common form of cardiac
arrhythmias, can be detected using ECG analysis [4]. PVC
is a common event occurring in a person of any age but
more frequent in elderly people where the heart beat is
initiated by the heart ventricles that are independent of
the pace set by the sinoatrial node. The immediate detec-
tion and subsequent treatment of PVCs is essential for
patients with cardiovascular disease because many studies
have shown that PVCs, when associated with heart attack,
can be linked to mortality [5,6]. Computer-aided automatic
detection and classification of cardiac events assist doctors
to ascertain the exigency and nature of medical interven-
tion required. In the last decade, development of bio signal
processing aided automatic diagnosis of ECG beats has
become more and more important as an active area of
research for researchers worldwide [7–16]. Many of them
are currently engaged in developing such efficient medical
support systems with accuracy, reliability, and robustness
as high as possible.

The methods reported so far for automatic detection
and classification of cardiac arrhythmias include self orga-
nizing maps [7], hidden Markov models [8], filter banks [9]
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and ANN based algorithms [10–12]. In research carried out
by Senhadji et al. [13], discrete wavelet transform was
hybridized with linear discriminant classifier for perform-
ing ECG beat classification. They achieved an accuracy as
high as 98% but they used only 25 beats in the training
phase and 28 beats for the testing phase. Shyu et al. [11]
achieved a high classification accuracy of 97.04% for PVC
beat classification. Their algorithm used wavelet transform
based feature extraction followed by a neuro fuzzy classi-
fication system. However, this system also suffered from
the drawback of utilizing small-sized testing datasets, as
they used only seven files from the MIT/BIH arrhythmia
database. In research carried out by Hosseini et al. [10], a
Multilayer Perceptron Neural Network (MLPNN) classifier
could achieve a poor classification accuracy of 88.3% even
while using only 10 files of the MIT/BIH arrhythmia
database.

On the other hand, classification results reported in the
literatures [12,14,15] were obtained on the basis of com-
paratively larger testing datasets. Hu et al. [14] achieved
a classification accuracy of 62% over 20 files of MIT/BIH
arrhythmia database, using self-organizing maps and
learning vector quantization. They introduced a patient
specific local classifier in addition to a global classifier,
which yielded much better results (94%). Chazal and Reilly
[15] achieved a classification accuracy of 89% over 44 files
of MIT/BIH database. They used linear discriminant based
classification, which involved fusing heart beat morphol-
ogy with timing interval features for the training of their
classifier. Inan et al. arrived at an accuracy of 95.16% over
40 files of the MIT/BIH arrhythmia database using an
MLPNN based classifier [12]. Their classifier was trained
on features extracted from wavelet transform of heart beat
morphology, coupled with R–R timing interval features.
They argued that the improvement in the performance of
their classifier with a large set of test data vastly depended
on the inclusion of the timing interval feature, because,
without R–R timing interval feature, the classifier could
only produce a classification accuracy of 81.7%. However,
in general, medical practitioners think that the ECG wave-
form morphology is a better way to detect underlying car-
diac disorders in comparison to the R–R timing interval.
Cardiologists commonly study ECG beat shapes to diag-
nose most of the cardiac arrhythmias in patients [4–6].

In this work, a novel algorithm for ECG beat classifica-
tion is proposed, which combines cross-correlation based
feature extraction and LVQ neural network based classifi-
cation algorithms to achieve the desired objective. The
classification algorithm only utilizes the features extracted
from ECG beat morphology. To study the robustness of the
proposed classification algorithm, the classifier was tested
with a large set of data. The suggested classifier not only
achieved a high classification accuracy and robust classifi-
cation of ECG beats but could also outperform several com-
peting algorithms, recently published in literatures.

The rest of the paper is organized as follows. Section 2
presents a brief description about the benchmark ECG sig-
nals. Section 3 describes the feature extraction strategy
proposed in this work, using cross-correlation methodol-
ogy. The LVQ based multiclass classification scheme is
detailed in Section 4. The proposed scheme for ECG beat

classification is described in Section 5. Section 6 presents
the performance evaluation. Conclusions are presented in
Section 7.

2. The benchmark ECG signals under consideration

In this study, the records of ECG signals from the MIT/
BIH arrhythmia database [16] have been utilized, for the
development and evaluation of the proposed classifier.
The database comprised with 48 records of ECG files. Each
file contains two leads, with modified lead-II signal avail-
able in 45 files, V1 signal in 40 files and II, V2, V4 and V5 sig-
nal distributed among 11 files [12]. The signals considered
were prepared by band-pass filtering the raw recordings at
0.1–100 Hz and sampled at 360 Hz. Two or more cardiolo-
gists annotated each record of the database independently.
The availability of the annotated MIT/BIH database has
enabled the evaluation of performance of the proposed
ECG beat classification algorithm. The present scheme does
not focus on beat detection because highly accurate beat
detection algorithms are already available in the litera-
tures [17,18]. Instead, it focuses on the problem of beat
classification.

In this study we are interested in classifying three dif-
ferent categories of ECG beats, as indicated in Table 1. A
total of 40 records have been used (see Tables 2 and 4)
from the database for this purpose, focusing on modified
lead-II signals, except in two files viz. #102 and #104, in
which lead V5 recordings were utilized. These data files
are representatives of normal beats, PVC beats and other
beats which includes Left Bundle Branch Block (LBBB),
Right Bundle Branch Block (RBBB) and paced beats. The
significance of accurate detection of PVC beats has been
discussed in the previous section and hence can be consid-
ered as natural choice to analyze this category of ECG beats
along with normal beats. On the other hand, the third cat-
egory of ECG beats i.e. other beats has been added to allow
the proposed algorithms to differentiate the PVC beats
from the LBBB and RBBB beats and the normal beats from
the paced beats, because LBBB and RBBB beats have very
similar morphological features to PVC beats and paced
beats are similar to normal beats [3,6].

3. Feature extraction by cross-correlation approach

Cross-correlation is a mathematical operation that is
very similar to convolution. Cross-correlation is used to
find the extent of similarities between two signals. The

Table 1
Three categories of interest into which the ECG beats of the study are
classified.

Beat descriptor Beat
label

Test
label

Normal beat N 1
Premature Ventricular Contraction (PVC) beat V 2
Any other beat that does not fall into N and V

categories (Right Bundle Branch Block (RBBB)
beat, Left Bundle Branch Block (LBBB) beat,
paced beat, etc.)

O 3
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cross-correlation technique has been conveniently used in
many applications like biomedical signal processing
[19–21], image processing [22], robotics and remote-
sensing, sonar and radar systems and in several other
domains [23,24]. In [19,20] cross-correlation technique
has been successfully used for pattern recognition of gait
and EEG signals respectively. One of the important
achievements of the present work is the successful use of
cross-correlation technique in frequency domain for the

analysis of ECG beats. The cross-correlation of two finite
duration causal sequences x[l] and y[l], each of length L
samples, is given by [24,25]:

rxy½m� ¼
XL�jmj�1

l¼0

x½l�y½l�m� ð1Þ

where m = �(L � 1), �(L � 2), . . . ,0,1, . . . , (L � 2), (L � 1).
The index m represents the time shift or lag parameter
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Fig. 1. Different types of sample heat beats, their cross-correlograms, and magnitude and phase cross-spectral density.
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and the subscript xy represent the sequences being corre-
lated. Eq. (1) represents the formula of cross-correlation
in time domain or sequence domain. Here the reference
signal is considered as x[l] and any other signal, which is
cross-correlated with x[l], is represented as y[l]. As dis-
cussed, we analyzed cross-correlation in frequency
domain, which was obtained from the Fourier transform
of the cross-correlation sequence given in Eq. (1). This is
known as cross-spectral density Sxy and given as [24,25]:

Sxyðf Þ ¼
X1

m¼�1
rxy½m�e�j2pfm ð2Þ

In the present work, a normal heart beat from file #100
has been selected as the reference. Each heart beat was
extracted by choosing a window of �300 ms to 400 ms
around the R-wave, as found in the database annotation.
Each such one-dimensional signal vector comprises 252
samples. In order to reduce DC offset and magnitude vari-
ation among different files of MIT/BIH arrhythmia data-
base, each 252-sample vector is normalized to a mean of
zero and standard deviation of unity. Fig. 1a–e show the
various types of sample heart beats analyzed in the present
study. All these preprocessed ECG heart beat signals are
cross-correlated with the normal heart beat, chosen as
the reference. This yields one cross-correlogram corre-
sponding to each heart beat. Some representative sets of
such cross-correlograms are shown in Fig. 1f–j. Using Eq.
(2), for each cross-correlation sequence, we have com-
puted cross-spectral density waveforms. These features
should ideally be responsible for characterizing each sig-
nal, but with a reduced dimension. From each such cross-
spectral density information, the corresponding magnitude
and phase cross-spectral density, i.e. |Sxy(f)| and \Sxyðf Þ
vectors, are created. Fig. 1k–o and p–t shows the plots of
the sample |Sxy(f)| and \Sxyðf Þ curves respectively, for the
cross-correlogram sequences up to the 30th harmonic.
Then the features extracted from |Sxy(f)| and \Sxyðf Þ are
given as:

fl magðnÞ ¼ jSxyðf Þj
��
f¼nf0

; n ¼ 1;2;3; . . . ;N ð3Þ

fl phaseðnÞ ¼ \Sxyðf Þ
��
f¼nf0

; n ¼ 1;2;3; . . . ;N ð4Þ

fl composite¼
fl magð1Þ; fl magð2Þ; . . . ; fl magðnÞ; . . . ; fl magðNÞ;

fl phaseð1Þ; fl phaseð2Þ; . . . ; fl phaseðnÞ; . . . ; fl phaseðNÞ

� �

ð5Þ

Here fl_mag(n) denotes the magnitude of cross-spectral
density at frequency f = nf0, the nth harmonic, where f0 is
the fundamental frequency. Similarly fl_phase(n) denotes
the phase of cross-spectral density at frequency f = nf0,
the nth harmonic. Then the composite feature vector
fl_composite is formed, considering all fl_mag and fl_phase
coefficients extracted. N is the maximum value of the har-
monic number up to which features are considered, for a
given problem. Hence, if we consider N = 15, it implies that
the coefficients are considered up to the 15th harmonic.
Then there will be 15 coefficients each for phase and mag-
nitude information and hence the feature vector created
will be a 30-element vector i.e. a feature vector will contain
2N number of entries or features.

4. Learning Vector Quantization (LVQ) based classifier

The presented work employs Learning Vector Quantiza-
tion (LVQ) algorithms for the purpose of classification of
ECG beats. LVQ belongs to the category of supervised clus-
tering approaches and was proposed by Kohonen [26].
Basically an LVQ neural network is a transformed version
of self-organizing map based unsupervised neural net-
work, where each output unit represents a particular class.
Usually LVQ networks comprise a competitive layer, fol-
lowed by a linear layer. The competitive layer is used to
learn to classify input vectors in a manner very similar to
that adopted in self organizing algorithms and the linear
layer is used to transform the competitive layer’s classes
into desired output classes [27]. The weight vector for an
output unit is often referred to as a codebook vector for
the class that the unit represents. If different feature vec-
tors grouped within the same class label are actually
drawn from different classes, then classification error
occurs. To minimize classification error, the LVQ algorithm
adjusts the boundary (or boundaries) between the clusters
of different classes. Different LVQ algorithms have so far
been developed to handle different natures of classification
problems. In our proposed approach, the optimized learn-
ing rate LVQ1 and LVQ2.1 algorithms have been used for
training and fine-tuning purposes respectively [28,29].

In LVQ1, for a given M-dimensional input vector p, an
M-dimensional code word wk is found such that

k ¼ arg min
i
fkp�wikg ð6Þ

The code word is then updated as follows:

wkðt þ 1Þ ¼ wkðtÞ þ aðtÞsðtÞ½p�wkðtÞ� ð7Þ

where s(t) = +1 if p and wk are in same class and s(t) = �1,
otherwise; a(t) is the time-varying learning rate. The other
code words in the codebook remain unchanged. The proce-
dure adopted to update the code word for the LVQ2.1 algo-
rithm is a little different from that of the LVQ1 algorithm.
In LVQ2.1 algorithm, two weight vectors that are closest
to the input vector may be updated, provided that one
belongs to the correct class and the other one belongs to
a wrong class and the other condition to be satisfied is that
the input falls in a ‘‘window’’ near the midplane of the two
vectors. The window is defined as [29]:

min
di

dj
;
dj

di

� �
> ð1� eÞ and max

di

dj
;
dj

di

� �
< ð1þ eÞ ð8Þ

where di and dj are the Euclidean distances of p from wi and

wj respectively i.e. di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

m¼1ðpm �wimÞ2
q

and

dj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

m¼1ðpm �wjmÞ2
q

. Here each M-dimensional p and

wk vectors can be denoted as: p = {p1, p2, ..., pm, ..., pM} and
wk = {wk1, wk2, ..., wkm, ..., wkM}. The value of e is recom-
mended to lie between 0.2 and 0.3 [27]. If the input is ‘near’
the midplane, the two adjoint weight vectors are adjusted,
under the assumption that the input vector p and wj belong
to the same class, and p and wi do not belong to the same
class. The code word will be updated as follows:

wiðt þ 1Þ ¼ wiðtÞ � aðtÞ½p�wiðtÞ� ð9aÞ

S. Dutta et al. / Measurement 44 (2011) 2020–2027 2023
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wjðt þ 1Þ ¼ wjðtÞ þ aðtÞ½p�wjðtÞ� ð9bÞ

This moves the weight vector wj more towards the input
vector p and the weight vector wi away from the input vec-
tor p. Thus, given two weight vectors closest to the input,
such that one belongs to the wrong class and the other
belongs to the correct class, and so long as the input falls
in a midplane window, the two weight vectors will be
adjusted. Usually the classification results obtained with
LVQ2.1 algorithm are more robust than with LVQ1
algorithm. The usual practice is to employ the LVQ2.1 algo-
rithm after the LVQ1 algorithm has been implemented.

In the presented work, the proposed LVQ based classi-
fier is configured as a three-class classification system
where the classes correspond to normal heart beats (N),
PVC beats (V) and the other beats (O). The reason behind
using both LVQ1 and LVQ2.1 training algorithms to train
LVQ neural network in classifying three categories of heart
beats is to effectively separate the normal beats from the
paced beats and the PVC beats from the LBBB and RBBB
beats. Our experimentations demonstrated that LVQ1 algo-
rithm alone was not able to create sharp and accurate
boundaries between the classes, if the different types of
heart beats have almost similar morphological characteris-
tics but belong to different classes.

5. The proposed scheme for ECG beat classification

The presented work intends to develop a robust classifi-
cation algorithm that can automatically classify ECG beats.
As mentioned earlier, for this work, a window of �300 ms
to 400 ms around R-wave was selected, as found in the
database annotation. After preprocessing, each of the one-
dimensional 252 sample ECG vectors is cross-correlated
with the reference heart beat to obtain cross-correlogram
for ECG beat under consideration. The cross-correlogram
is then transformed to frequency domain using Fourier
transform, to obtain its magnitude and phase cross-spectral
densities. From magnitude and phase cross-spectral den-
sity curves we created five different sizes of feature vectors.
We considered 20, 30, 40, 50 and 60 feature set vectors con-
sidering magnitude and phase quantities up to N = 10, 15,
20, 25 and 30 harmonics. These feature vectors were uti-
lized to train separate LVQ based classifiers and each
trained classifier was subsequently tested. For training,
we selected heart beats from different files of the MIT/BIH
arrhythmia database as representatives of various classes.
The robustness of the classifier was tested over a large set
of ECG data files.

The classifier was trained with a total of 1975 heart
beats from 18 files of MIT/BIH arrhythmia database. Those
heart beats were selected from files #102, 104, 105, 106,
107, 114, 118, 119, 200, 201, 203, 208,210, 212, 214, 215,
228 and 231 of MIT/BIH arrhythmia database. The training
dataset contains 810 normal beats, 455 PVC beats and 710
other beats. The total numbers of heart beats used for
training were very small in comparison to the total beats
of the database. This extreme skewness among the training
and testing systems was employed to check the generaliza-
tion capability of the proposed system, when implemented
in testing phase.

In this scheme, for each LVQ classifier developed, the
number of hidden layer neurons was set equal to the
number of features to be examined. This means, for feature
vectors, each of size 2N = 20, 30, 40, 50 and 60, the corre-
sponding classifier was developed using 20, 30, 40, 50 and
60 neurons, respectively. After training, the classifier was
tested using 93,246 beats from 40 files of the MIT/BIH data-
base, out of which, training dataset used only 18 files, and
the remaining 22 files were completely new to the classifi-
ers. In addition, less than 5% (i.e.1975) of the total beats in
18 training files were used for training the LVQ network.
The flow chart of the proposed scheme is shown in Fig. 2.
All programs were developed using MATLAB� version 7.0
platform, utilizing the neural network toolbox [27].

To determine the performance of the classifier, three
popular performance metrics are considered. They are:
accuracy, sensitivity and positive predictivity [12,14].
Accuracy indicates the performance of the classifier to per-
form three-class classification tasks, while how specific the
classifier is in classifying each class of heart beat is mea-
sured using sensitivity and positive predictivity metrics.
The overall accuracy of the classifier for each file in MIT/
BIH database is measured using the formula

A ¼ 100 1� Ne

Nb

� �
ð10Þ

where A is the percentage classification accuracy, Nb and Ne

are the total number of beats and total number of classifi-
cation errors in the file, respectively. The sensitivity (Se)
and the positive predictivity (Pp) of beat classification in
a file are computed in percentage as:

Se ¼ 100
TP

TP þ FN

� �
ð11aÞ

Start

Determine Cross-correlogram of 
ECG heart beat

Compute FFT of Cross-correlogram sequence

Create 32-dimensional feature vector from 
magnitude and phase cross-spectral density curve

Implement LS-SVM to classify Normal, PVC 
and Other heart beat

Output Normal/PVC/Other heart beat

End

Start

Determine Cross-correlogram of 
ECG heart beat

Compute FFT of Cross-correlogram sequence

Create 30-dimensional feature vector from 
magnitude and phase cross-spectral density curves

Implement LVQ to classify Normal, PVC 
and Other heart beat

Output Normal/PVC/Other heart beat

End

Start

Determine Cross-correlogram of 
ECG heart beat

Compute FFT of Cross-correlogram sequence

Create 32-dimensional feature vector from 
magnitude and phase cross-spectral density curve

Implement LS-SVM to classify Normal, PVC 
and Other heart beat

Output Normal/PVC/Other heart beat

End
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Determine Cross-correlogram of 
ECG heart beat

Compute FFT of Cross-correlogram sequence

Create 30-dimensional feature vector from 
magnitude and phase cross-spectral density curves

Implement LVQ to classify Normal, PVC 
and Other heart beat

Output Normal/PVC/Other heart beat

EndEnd

Fig. 2. Flowchart representation of the proposed scheme.
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Pp ¼ 100
TP

TP þ FP

� �
ð11bÞ

where TP represents true positives, FN represents false
negatives and FP represents false positives. True positives
are the number of heart beats, which have been correctly
assigned to a certain class, whereas, false positives pertain-
ing to a class are the number of heart beats, which actually
belong to other classes but were incorrectly assigned to
this specific class. A false negative pertaining to a class is
the number of beats which actually belong to that class
but was miss-classified and was assigned to other classes.
The sensitivity Se measures how successfully a classifier
classifies true beats whereas positive predictivity Pp mea-
sures how exclusively it classifies a certain class.

After the classification accuracy, sensitivity and positive
predictivity for each file in MIT/BIH database are individu-
ally determined, the next important step is to calculate the
weighted average sensitivity and positive predictivity as a
measure of the overall performance of the classifier. This
determination of weighted average sensitivity and positive
predictivity can be considered as important issues because
of the huge variation among files in absolute numbers of
normal, PVC and other beats. Weighted average sensitivity
for each class is calculated using the formula

SeWA ðcÞ ¼
PF

q¼1Seq ðcÞNbq ðcÞPF
q¼1Nbq

ð12Þ

where SeWA denotes weighted average sensitivity for the
class c, F is the total number of files in the database, Seq

and Nbq are the sensitivity and the number of beats respec-
tively, of file q belonging to class c. A similar equation was
also used to determine the weighted average positive
predictivity for each class.

6. Performance evaluation

We tested our LVQ based classifier over a large set of
data files, using each of five feature sets discussed earlier.
The accuracy, weighted sensitivity and positive predictivi-
ty of LVQ to classify normal (N), PVC (V) and other beats
(O) for these feature sets are shown in Tables 2 and 3. A
deeper study of Tables 2 and 3 reveals that the classifier
produced best performance when the 30-feature vector
set was utilized. The average overall accuracy obtained
with 30-feature vector was 93.39% for the 18 files of the
training set and 96.76% for the other 22 files. The overall
average accuracy in beat classification over all files was
95.24%. Using Eq. (12), we found that, with 30-feature vec-
tor, the weighted average sensitivity was 97.49% for nor-
mal beats, 85.02% for PVC beats and 89.70% for other
beats. Similarly the values of weighted average positive
predictivity for normal, PVC and other beats were 97.25%,
88.77% and 94.91% respectively. Table 3 shows that these
results, using 30-feature vectors, produced best results
for Se in two out of three classes, best results for Pp in
two out of three classes and the second best result for Pp

in the remaining class. This justifies our rationale behind
choice of 30-feature vectors, for the classifier designs
carried out. Table 4 shows a comprehensive tabulation of

classification accuracy with sensitivity and positive predic-
tivity, for each class in all 40 files of the MIT/BIH database,
obtained with 30 feature set vector.

The classification performance of LVQ is next compared
with Back Propagation Neural Network (BPNN) and Elman’s
Recurrent Neural Network (ERNN) based classifiers [19],
with each classification algorithm developed using identical

Table 2
Classification accuracy of 40 files obtained with different feature sets using
LVQ.

FILE 20
features

30
features

40
features

50
features

60
features

100 97.97 98.55 94.50 97.36 97.97
101 99.09 99.25 98.82 98.87 98.77
102 83.20 96.89 96.06 95.84 95.61
103 99.57 99.90 99.62 99.62 99.62
104 84.15 86.84 86.71 89.54 86.84
105 90.31 90.04 89.57 87.82 88.05
106 85.00 89.29 88.60 89.39 89.39
107 94.43 97.10 93.26 91.66 84.78
109 61.98 98.78 98.66 98.34 94.07
112 98.82 99.72 98.38 96.65 98.58
113 10.93 99.72 92.75 38.93 96.82
114 71.71 89.45 73.36 60.15 60.20
115 98.62 100.0 99.13 99.33 99.74
116 98.55 99.46 98.51 97.68 98.67
118 94.46 98.24 98.11 98.64 98.16
119 99.85 99.95 98.94 99.60 99.75
121 93.77 96.29 89.84 88.66 78.99
122 99.68 99.96 95.39 99.80 99.84
123 99.54 99.67 99.60 99.74 99.54
200 93.84 94.54 93.19 90.46 93.50
201 93.06 93.17 92.66 93.17 92.91
202 87.16 95.74 89.74 89.60 89.27
203 64.20 80.99 78.21 66.82 59.57
205 98.27 98.53 98.57 98.38 98.61
208 86.01 88.25 87.06 90.86 90.48
210 83.50 93.73 71.90 79.38 76.17
212 45.16 97.74 95.48 93.15 96.83
213 87.87 86.89 46.17 77.69 45.86
214 88.14 96.59 95.58 96.90 96.64
215 93.07 96.40 95.63 94.67 96.28
217 76.47 81.78 45.92 82.55 40.44
219 84.29 96.00 96.84 95.86 95.73
220 95.36 96.24 95.50 95.41 95.41
221 99.84 99.79 99.30 99.51 99.75
223 87.40 93.24 90.40 90.93 88.74
228 88.05 91.91 86.93 86.35 89.03
230 97.87 98.98 97.52 98.23 98.36
231 95.35 99.81 99.36 99.87 98.92
233 87.85 94.70 94.83 94.87 94.77
234 95.31 95.57 88.95 66.38 91.60

Average
accuracy
(%)

87.24 95.24 90.74 90.22 89.86

Table 3
Sensitivity and positive predictivity evaluation for various feature sets.

Feature
set

Average
accuracy
(%)

Normal beats PVC beats Other beats

Se Pp Se Pp Se Pp

20 87.24 92.27 95.77 75.39 88.46 73.51 93.98
30 95.24 97.49 97.25 85.02 88.77 89.70 94.91
40 90.74 92.16 96.85 85.31 85.48 84.81 94.60
50 90.22 91.08 97.02 82.94 86.39 89.16 94.64
60 89.89 91.18 97.05 86.72 84.08 83.58 95.03
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feature sets in each case. BPNN and ERNN both incorporate
an MLP three layer architecture where the second layer con-
tains hidden layer neurons. In second layer, ERNN contains
context units in addition to hidden layer neurons. Number
of hidden layer neurons for both BPNN and ERNN classifiers
is equal to the number of features considered in each case.
The performances of BPNN, ERNN and LVQ based multiclass
classifiers, for five different feature sets, as discussed, are
shown in Table 5. BPNN produced maximum classification
accuracy of 84.16% using 30 features vector, whereas ERNN

produces maximum classification accuracy of 88.43% using
20 features vector. Out of five cases, in four cases LVQ pro-
duced superior results. The best result obtained is with
LVQ when 30-feature vectors are employed and it could pro-
duce an average accuracy of 95.24%. Hence, it can be easily
seen that LVQ based system is much superior compared to
other competing algorithms in terms of overall classification
accuracy.

To have another realistic understanding of the strength
of the proposed scheme, the results can be compared with

Table 5
Performance of LVQ in comparison with BPNN and ERNN.

Algorithms 20 features 30 features 40 features 50 features 60 features

BPNN 83.31 84.16 82.48 82.25 82.42
ERNN 88.43 85.39 80.39 80.23 78.76
LVQ 87.24 95.24 90.74 90.22 89.86

Table 4
Comprehensive results for training and testing files with 30-features.

File Beats Accuracy Normal beats PVC beats Other beats

Beats Se Pp Beats Se Pp Beats Se Pp

100 2271 98.55 2237 100.0 98.55 1 100.0 100.0 33 0.00 0.00
101 1863 99.25 1858 99.52 99.78 0 – – 5 0.00 0.00
102 2185 96.89 99 91.92 85.05 4 50.00 3.77 2082 97.21 99.95
103 2082 99.90 2080 100.0 99.90 0 – – 2 0.00 0.00
104 2227 86.84 163 53.37 34.39 2 100.0 1.85 2062 89.48 98.88
105 2570 90.04 2524 91.44 99.18 41 9.76 2.48 5 40.00 2.44
106 2026 89.29 1506 96.28 91.25 520 69.04 90.89 0 – –
107 2135 97.10 0 – – 59 84.75 50.51 2076 97.45 99.66
109 2530 98.78 0 – – 38 60.53 71.88 2492 99.36 99.76
112 2537 99.72 2535 99.80 99.92 0 – – 2 0.00 0.00
113 1793 99.72 1787 100.0 99.72 0 – – 6 16.67 100.0
114 1877 89.45 1818 90.15 99.09 43 86.05 57.81 16 18.75 1.89
115 1951 100.0 1951 100.0 100.0 0 – – 0 – –
116 2410 99.46 2300 99.78 99.87 109 93.58 97.14 1 0.00 0.00
118 2276 98.24 0 – – 16 31.25 83.33 2260 98.72 99.87
119 1985 99.95 1541 100.0 100.0 444 99.78 100.0 0 – –
121 1861 96.29 1859 96.40 99.89 1 0.00 0.00 1 0.00 0.00
122 2474 99.96 2474 99.96 100.0 0 – – 0 – –
123 1516 99.67 1513 99.80 100.0 3 33.33 100.0 0 – –
200 2599 94.54 1742 98.97 94.73 825 88.73 99.46 32 3.13 2.33
201 1961 93.17 1623 99.63 93.90 198 95.46 91.30 140 15.00 65.63
202 2134 95.74 2059 98.01 97.58 19 89.47 68.00 56 14.29 19.51
203 2978 80.99 2527 81.36 96.80 444 79.96 58.48 7 14.29 0.40
205 2654 98.53 2569 99.77 99.07 71 73.24 94.55 14 0.00 0.00
208 2953 88.25 1585 98.42 90.02 992 93.45 89.83 376 31.65 63.30
210 2648 93.73 2421 96.65 97.62 194 72.68 77.47 33 3.03 1.45
212 2746 97.74 922 99.24 94.72 0 – – 1824 96.96 99.66
213 3249 86.89 2639 99.85 87.34 220 84.55 83.78 390 0.51 20.00
214 2260 96.59 0 – – 256 82.42 90.56 2004 98.40 98.95
215 3361 96.40 3193 99.88 97.26 164 31.10 98.08 4 0.00 0.00
217 2206 81.78 244 68.44 63.02 162 93.21 34.09 1800 82.56 99.20
219 2152 96.00 2080 96.83 99.60 64 78.13 81.97 8 25.00 2.90
220 2046 96.24 1952 99.59 96.57 0 – – 94 26.60 75.76
221 2425 99.79 2029 99.90 99.90 396 99.24 99.75 0 – –
223 2603 93.24 2027 99.31 93.37 473 87.53 97.41 103 0.00 0.00
228 2051 91.91 1686 94.37 99.13 362 81.22 90.18 3 0.00 0.00
230 2254 98.98 2253 98.98 100.0 1 100.0 7.69 0 – –
231 1569 99.81 314 100.0 99.37 2 50.00 100.0 1253 99.84 99.92
233 3077 94.70 2229 98.39 95.35 830 86.51 96.38 18 16.67 9.38
234 2751 95.57 2698 97.22 98.31 3 100.0 37.50 50 6.00 4.00

Total 93,246 – 67,037 – – 6957 – – 19,252 – –
Average 2331.20 95.24 1675.9 – – 173.93 – – 481.30 – –
Wt. avg. – – – 97.49 97.25 – 85.02 88.77 – 89.70 94.91
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the results of some other competing classification algo-
rithms reported so far, for similar problems. The classifica-
tion accuracy reported by Inan et al. [12] was 95.16%. This
scheme used 43 features that included 42 dyadic wavelet
decomposition samples and one R–R time interval feature.
The classification accuracy reported in [12] without R–R
interval feature was only 81.7%. In comparison, our pro-
posed LVQ based classifier could produce a classification
accuracy of 95.24%, using 30 features and this scheme con-
sidered heart beat morphology only. When compared to
the scheme proposed by Shyu et al. [11], for the seven
records considered, they could achieve an overall accuracy
of 97.04%. For the same set of files, our proposed algorithm
could achieve an accuracy of 98.08%. Hence, it can be
inferred that the proposed algorithm was able to achieve
better accuracy, even with smaller-sized feature vectors
that can reduce the computational burden and storage
requirement.

7. Conclusions

In this presented work an effort has been made to
develop a robust heart beat detection algorithm that can
classify normal/PVC/other heart beats automatically. This
work proposes a hybrid methodology of using cross-corre-
lation as an efficient feature extraction tool, which, when
coupled with the LVQ classifiers, can efficiently be
employed as an automated ECG beat classification mecha-
nism. The classifier can efficiently segregate input ECG
beats into normal beats, PVC beats, and other beats which
includes RBBB, LBBB and paced beats. The performance of
the proposed scheme has been tested using benchmark
signals available in MIT/BIH arrhythmia database, where
a small sized training file and large-sized testing file was
used to demonstrate the generalization capability of the
system, when presented with unknown inputs. An overall
classification accuracy of 95.24% was achieved over the
40 files of the database. This scheme has shown how effec-
tively frequency domain information of cross-correlograms
can be utilized to extract relevant features. A comparative
study with other ANN based classifiers and with several
competing algorithms, recently developed for the same
purpose, has been carried out to justify the usefulness of
the proposed scheme. It has been ably demonstrated that
the proposed scheme could outperform all previous
schemes and could mostly achieve encouraging results
with a lighter computational burden.

The proposed algorithm was tested for 40 data files
from the MIT/BIH arrhythmia database and these 40 files
were chosen identical to those chosen in the work of Inan
et al. [12]. The rationale behind this choice was to make an
appropriate comparison between two competing algo-
rithms on the basis of identical choice of benchmark data.
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