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a b s t r a c t

The present work proposes the development of an automated medical diagnostic tool that can classify
ECG beats. This is considered an important problem as accurate, timely detection of cardiac arrhythmia
can help to provide proper medical attention to cure/reduce the ailment. The proposed scheme utilizes
eywords:
lectrocardiogram (ECG)
eat classification
ross-correlation
ross-spectral density

a cross-correlation based approach where the cross-spectral density information in frequency domain is
used to extract suitable features. A least square support vector machine (LS-SVM) classifier is developed
utilizing the features so that the ECG beats are classified into three categories: normal beats, PVC beats
and other beats. This three-class classification scheme is developed utilizing a small training dataset
and tested with an enormous testing dataset to show the generalization capability of the scheme. The
scheme, when employed for 40 files in the MIT/BIH arrhythmia database, could produce high classification

51–96
upport vector machine accuracy in the range 95.

. Introduction

The electrocardiogram (ECG) is a low cost and non-invasive test
hich effectively presents valuable clinical information regarding

he morphology, rate and regularity of the heart. It is of utmost
mportance to accurately detect ECG beats so that the timely diag-
osis of worrying heart conditions can lead to immediate medical
ttention. Specially, the timely detection of premature ventricu-
ar contractions (PVCs) is of utmost importance as this may lead
o cardiac arrhythmias that may turn out to be fatal. A premature
entricular contraction is a relatively common event where the
eartbeat is initiated by the heart ventricles that are independent
f the pace set by the sinoatrial node.

PVC can occur in a healthy person of any age but becomes
ore frequent in the elderly people and is more commonly found

n men. The immediate detection and subsequent treatment of
VCs is essential for patients with cardiovascular disease because
tudies have shown that PVCs, when associated with heart attack,
an be linked to mortality. Computer-aided automatic diagno-
is of cardiac events assists doctors to ascertain the exigency

nd nature of the medical intervention required. Thus automatic
etection and classification of ECG beats using biomedical signal
rocessing techniques has evolved as an active area of research
7–16]. Such automated diagnostic tools can be advantageous

∗ Corresponding author. Tel.: +91 9830928313.
E-mail address: saibal dutta2001@yahoo.com (S. Dutta).
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.12% and could outperform several competing algorithms.
© 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

utilized by people in medical fraternity as an efficient support
system.

Several methods for automatic detection and classification of
cardiac arrhythmias have been reported in the literature, includ-
ing algorithms based on self-organizing maps [7], filter banks [8],
hidden Markov models [9] and neural networks [10–12]. In [13],
Senhadji et al. used discrete wavelet transform (DWT) aided linear
discriminant classifier for ECG beat classification to achieve 98%
classification accuracy. But their classifier used only 25 beats in
training and 28 beats for testing. Shyu et al. could also achieve a high
classification accuracy of 97.04% for PVC beat classification, uti-
lizing wavelet transform based feature extraction in tandem with
fuzzy neural network based classifier. However, their classification
results were based on only seven files of the MIT/BIH arrhyth-
mia database, out of which two files were used in the training
dataset of the neural network [11]. In [12], Hosseini et al. achieved a
classification accuracy of 88.3% using multilayer perceptron neural
network (MLPNN) classifier using 10 files of the MIT/BIH arrhyth-
mia database. Similar classifiers were also developed in [11–13]
which were tested over small datasets.

In the literatures [10,15,16], classification results were reported
on the basis of comparatively larger testing datasets. In [15] a linear
discriminant based classification scheme was reported that could

achieve a classification accuracy of 89% over 44 files of the MIT/BIH
arrhythmia database. Hu et al. introduced a patient specific local
classifier in addition to a global classifier in [16]. They implemented
their algorithm with 20 files of the MIT/BIH arrhythmia database,
using self-organizing maps and learning vector quantization. The

d.
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lassification accuracy of their local classifier was as high as 94%,
ut accuracy of their global classifier was as low as 62%. Inan et al.
10] used an MLPNN classifier and could achieve an overall accuracy
f 95.16% over 40 files of the MIT/BIH arrhythmia database. Their
ethod comprised features extracted from wavelet transform of

eart beat morphology, coupled with R–R timing interval features
nd these augmented feature vectors were utilized for the train-
ng of their classifier. They argued that the performance of their
lassifier vastly depended on the inclusion of the timing interval
eature because the performance of their classifier could only be
1.7% without incorporation of the timing interval feature. How-
ver it is a common belief among medical practitioners that the
hape of the waveform is more important than R–R timing interval.
octors commonly use heart beat morphology to diagnose most of

he arrhythmias in patients.
In this work, a new ECG beat classification algorithm is proposed

tilizing features extracted from waveform morphology only. Char-
cteristic features from each signal are extracted by first computing
he cross-correlogram of the signal and then transforming the
ross-correlogram to the frequency domain and utilizing the cross-
pectral density information. Suitable feature vectors thus created
re then utilized to train a support vector machine (SVM) classi-
er [18,24], for ECG beat classification. This multiclass classifier is
eveloped utilizing a popular variant of SVM, called least square
VM (LS-SVM). The system is developed utilizing a training dataset,
s small sized as less than 1% of the size of the testing dataset, to
emonstrate the generalization capability of the proposed scheme.
he utility of the proposed scheme is demonstrated by implement-
ng it for 40 files available from MIT/BIH arrhythmia database [25]
nd the proposed scheme could achieve overall classification accu-
acy as high as 95.51–96.12%. A comparison of this performance
ith competing algorithms, recently proposed in literatures, show

he usefulness of the scheme.
The rest of the paper is organized as follows. Section 2 presents

brief description about the acquisition of ECG signals. The cross-
orrelation based feature extraction methodology is detailed in
ection 3. The LS-SVM based multiclass classification scheme is
resented in Section 4. The proposed scheme for ECG beat classifi-
ation is detailed in Section 5. Section 6 presents the performance
valuation. Conclusions are presented in Section 7.

. Acquisition of ECG signals

To develop a robust algorithm for ECG beat classification, we
ave utilized benchmark ECG signals, freely available from the
IT/BIH arrhythmia database [25]. The database contains 48 half-

our excerpts of two channel ambulatory ECG recording files,
btained from 47 different patients. Each file contains two leads,
ith V1 in 40 files, modified lead-II in 45 files, and II, V2, V4 and
5 distributed among 11 files [10]. The recordings were digitized
ith a sampling frequency of 360 Hz and acquired with 11 bit res-

lution over 10 mV range. The proposed algorithm used a total of
0 files from the database and analyzed modified lead-II signals
rom these files except in two file #102 and file #104. In case of
hese two files, lead V5 recordings were utilized instead of mod-
fied lead-II recordings because modified lead-II recordings were
ot available.

Each record of MIT/BIH arrhythmia database is annotated by two
r more cardiologists independently, both in timing information

nd beat classification. Like several previous works, this work used
he annotation to locate beats in ECG signals for the classification of
eart beats. This work does not focus on beat detection because sev-
ral highly accurate beat detection algorithms are already available
n the literature [21,22].
Physics 32 (2010) 1161–1169

3. Cross-correlation based feature extraction

Cross-correlation is a mathematical operation that can be suit-
ably utilized to find the extent of similarities between two signals.
The cross-correlation technique has been successfully used in many
applications like robotics and remote-sensing, sonar and radar sys-
tems for range and position detection, in the recovery of signals
buried in noise, biomedical signal processing [1–4] and in several
other domains [5,6]. In [1,2], cross-correlation technique was con-
veniently used for classification of gait and EEG signals respectively.
One of the novelties of the present work lies in applying cross-
correlation technique judiciously, as a feature extraction tool, for
the problem of ECG beat classification.

The cross-correlation of two finite duration causal sequence x[n]
and y[n], each of length N samples, is given by [26]

rxy[m] =
N−|m|−1∑

n=0

x[n]y[n − m] m = −(N − 1),

− (N − 2), . . . , 0, 1, 2, 3, . . . , (N − 1) (1)

In this work recording of a normal heart beat is chosen as ref-
erence. Each ECG beat was extracted by selecting a window of
−300 ms to 400 ms around the R-wave, as found in the database
annotation. Each such one-dimensional signal vector comprises
252 samples and this vector is normalized to a mean of zero and
standard deviation of unity. This preprocessing is carried out to
reduce DC offset and magnitude variation among different files.
Fig. 1 shows the various types of sample heart beats analyzed
in the present study. All these preprocessed ECG heart beat sig-
nals are cross-correlated with the normal heart beat signal, chosen
as the reference. This yields one cross-correlation sequence each
corresponding to a heart beat. Some representative sets of such
cross-correlation sequences are shown in Fig. 2. For this work a
normal heart beat from file #100 has been chosen as reference. In
Eq. (1) the reference signal is considered as x[n] and the heart beat
signal from any other file, for which the cross-correlation sequence
is computed, is termed y[n]. To transform each cross-correlation
sequence rxy to the frequency domain we have computed Fourier
transform of each rxy to produce the cross-spectral density Sxy given
as:

Sxy(f ) = F(rxy[m]) (2)

From these cross-spectral density waveforms, for each heart
beat, relevant features were extracted. These features should ide-
ally responsible for characterizing each signal, but with a reduced
dimension. From each such cross-spectral density information, the
corresponding magnitude and phase cross-spectral density, i.e.∣∣Sxy(f )

∣∣ and \ Sxy(f) vectors, are created. Figs. 3 and 4 show the plots
of the sample |Sxy(f)| and \ Sxy(f) curves for the cross-correlation
sequences shown in Fig. 2, upto 20th frequency sample of discrete
Fourier transform (DFT). Then the features extracted from |Sxy(f)|
and \ Sxy(f) can be given as:

fl mag(k) = |Sxy(f )|
∣∣
f =kf0

, k = 1, 2, 3, . . . (3)

fl phase(k) = \ Sxy(f )
∣∣
f =kf0

, k = 1, 2, 3, . . . (4)

fl composite = [fl mag(1), fl mag(2), . . . , fl mag(k), . . . ,

fl phase(1), fl phase(2), . . . , fl phase(k), . . .] (5)
Here fl mag(k) denotes the magnitude of cross-spectral density at
kth frequency sample. Similarly fl phase(k) denotes the phase of
cross-spectral density at kth frequency sample. Then the composite
feature vector fl composite is formed, considering all fl mag and
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Fig. 1. Different

phase coefficients. Hence if we consider coefficients upto 10th
requency sample, the feature vector will be a 20 element vector.

. Multiclass classification using least square support
ector machine (LS-SVM)
The present work employs support vector machines (SVM)
or the purpose of classification of ECG heart beats. The work
mploys a popular variant of SVM, called least square SVM (LS-
VM), employed for this purpose, with an aim to perform multiclass
lassification. A brief discussion on SVM for binary classification,

Fig. 2. Cross-correlation sequences of various heart beat
of heart beats.

LS-SVM methodology and LS-SVM based multiclass classification
is follows.

4.1. Support vector machine

Support vector machine (SVM) is a powerful methodology for
solving problems in function estimation, density estimation and

non-linear classification. SVM has been introduced through the
works of Vapnik [17], which has a firm grounding in statistical
learning theory and essentially implements structural risk mini-
mization [24]. In case of binary classification problems the main
objective of SVM is to find optimal separating hyperplane between

s, belonging to different classes, as shown in Fig. 1.
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Fig. 3. Magnitude cross-spectral density of various samp

he two classes in a manner such that the margin of separation
etween the two classes is maximized [18].

To develop an SVM based classifier for linearly separable pat-
erns, a suitable training set is created that can be represented by
(xi, di)}N

i=1, where xi is the n-dimensional input feature vector and
i ∈{− 1, + 1} is the target output, corresponding to two classes. To

eparate these classes, the SVM algorithm has to find the optimal
eparating hyperplane (with maximum separation or margin) so
hat SVM can produce good generalization ability. Fig. 5 shows a
ypical situation where for some data points (xi,di), w . x + b = + 1 is
atisfied and for other data points (xi, di), w . x + b = − 1 is satisfied.

Fig. 4. Phase cross-spectral density of various sample heart b
rt beats belonging to different classes, as shown in Fig. 1.

The equation of decision surface of a corresponding hyperplane
can be written as w . x + b = 0, where x is the input feature vector, w is
the adjustable weight vector and b is the bias. For linearly separable
patterns the optimal separating hyperplane can be determined by
solving the optimization problem:

1

Minimize ϕ(w) =

2
||w||2

subject to di(w.x + b) ≥ 1, i = 1, 2, . . . , N
(6)

The above constrained optimization problem is solved by using
Lagrangian multiplier method, when we study linearly non-

eats, belonging to different classes, as shown in Fig. 1.
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ig. 5. The SVM for the linearly separable case. The bold middle line indicates opti-
al separating hyperplane.

eparable patterns, in which the date points of different classes
o overlap (Fig. 6). For classification of non-linearly separable data,
lack variables �i ≥ 0, i = 1, 2, . . ., N, are introduced. The optimization
roblem then gets modified to:

Minimize ϕ(w, �) = 1
2

||w||2 + C

(
N∑

i=1

�i

)
subject to di(w.x + b) ≥ 1 − �i i = 1, 2, ...., N

(7)

here C is the regularization parameter, assigns different relative
eights to the two terms in the objective function.

In many practical situations, it will not be sufficiently satisfac-
ory to consider linear decision functions in the pattern space. In
hose situations the classification accuracy can be improved by con-
idering a non-linear decision boundary. The concept of linear SVMs
an be extended to the domain of non-linear SVMs by introducing
he notion of inner product kernel [24]. In this method the data
oints are transformed to a high dimensional Euclidean space H
hrough a non-linear function � such that � : Rn → H. In this high
imensional feature space H, these data points can be separated
y a linear decision boundary. Hence the concept of soft margin

VM classifier can be utilized in feature space, where the algorithm
orks, on �(x) instead of x. The training algorithm only depends

n function of the form �(x) . �(xi). Now if a ‘kernel function’ K is
mployed such that K(x, xi) = �(x) . �(xi), it is only required to use

ig. 6. The SVM for the linearly non-separable case. The bold middle line indicates
ptimal separating hyperplane.
Physics 32 (2010) 1161–1169 1165

K in the training algorithm and no explicit knowledge of the actual
form of � is required [18]. Then the decision function is given by

f (x) = sign

(
N∑

i=1

˛idiK(x, xi) + b

)
(8)

where ˛i, i = 1, 2, . . ., N are called Lagrange multipliers. A popular
Kernel function employs Gaussian radial basis kernel and is given
by

K(x, y) = e−(||x−y||2/2�2) (9)

where � is kernel parameter or width. The values chosen for two
kernel parameters (C, �2) significantly affect the classification accu-
racy of the SVM classifier.

4.2. Least square support vector machine (LS-SVM)

LS-SVMs were originally proposed in [19]. The most crucial dif-
ference between SVMs and LS-SVMs is that LS-SVMs use a set of
linear equations for training while SVMs use a quadratic optimiza-
tion formulation. Hence in contrast to the classification problem
formulated for classical SVM approach given in Eq. (7), the opti-
mization problem for LS-SVM can be formulated as:

Minimize ϕ(w, b, e) = 1
2

||w||2 + �

2

(
N∑

i=1

ei
2

)
subject to di(w.x + b) = 1 − ei i = 1, 2, . . . , N

(10)

Like SVM, LS-SVM can also be extended to the cases with non-
linear boundaries employing kernel functions.

4.3. Multiclass classification methodology

The binary natured LS-SVM can be extended to multiclass clas-
sification problems [20], either by constructing and combining
several binary classifiers or directly considering all data in one opti-
mization formulation. The task of an M-class classifier is to predict
the class label cm, m = 1, 2, . . ., M for an input vector x ∈ Rn. One
can solve M-class classification problems by reformulating it into
a set of L binary classification problems. There are various meth-
ods to solve multiclass classification problems by combining binary
LS-SVMs like one-versus-one, one-versus-all etc. In one-versus-
one, method (M(M − 1))/2 one-versus-one binary classifiers classify
each pair of 2 classes. In another method each class, cm, m = 1, 2, . . .,
M is represented by unique binary code word cm ∈{− 1, + 1}L of
L bits. Here L binary classifiers are trained to classify two oppos-
ing subsets with different output bits. In minimal output coding
(MOC), LS-SVM based multiclass classifiers use L bits to encode up
to 2L classes. In one-versus-all coding, which uses L = M bits, it sub-
stitutes mth bit of codeword cm equal to +1 while all other bits of
cm equal to 0 or −1, depending on the type of coding.

The proposed classifier is configured as a three-class classifica-
tion system (i.e. cm = 3) where the classes correspond to normal
heart beat (N), PVC beat (V) and other beat (O). In this work
we proposed a scheme to classify these three types of beats. LS-
SVM is activated using the feature obtained from cross-correlation
sequence as discussed in Section 3. In this work, MOC method of
LS-SVM based multiclass classifier is used for this three-class clas-
sification problem.
5. The proposed scheme for ECG beat classification

The present work intends to develop a classifier which can auto-
matically classify heart beats into three different categories. Those
three classes are normal heart beat (N), PVC heart beat (V) and other
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ypes of heart beat (O). As discussed earlier, a window of −300 ms
o 400 ms around R-wave, as found in the database annotation, was
sed in our work. After normalization, these ECG vectors are cross-
orrelated with the reference heart beat to obtain cross-correlation
equence for ECG beat under consideration. The cross-correlogram
s then transformed to frequency domain using Fourier transform
o obtain its magnitude and phase cross-spectral densities. From
ross-spectral density curves we created several different sizes of
eature vectors for our work. We considered 26, 28, 30, 32, 34, 36
nd 38 feature set vectors, considering magnitude and phase quan-
ities up to k = 13–19 frequency samples. These feature vectors were
tilized to train separate LS-SVM based classifiers and each trained
lassifier was subsequently tested. For each training procedure, we
elected heart beats from different files of the MIT/BIH arrhyth-
ia database as representatives of various classes. To check the

obustness of the LS-SVM based classifier developed, the system
as tested over a large set of ECG data.

As discussed earlier, an LS-SVM based multiclass classifier is
mplemented for classification. This multiclass classification task

as achieved by using a minimum output coding (MOC) scheme
20]. In this scheme, for each classifier developed, the number of
eurons was set equal to number of features to be examined. This
eans, for feature vectors each of size k = 26, 28, 30, 32, 34, 36 and

8, the corresponding classifier was developed using 26, 28, 30,
2, 34, 36 and 38 neurons. This classification job was performed

n MATLAB® version 7.0 platform, utilizing the LS-SVM package
vailable in [23].

Each time the LS-SVM based classifier was trained with a total
f 780 heart beats from 17 files of MIT/BIH arrhythmia database.
hese file were selected as representatives of the following heart
eats: normal, PVC, left bundle branch block (LBBB), right bundle
ranch block (RBBB) and paced beats. The training dataset thus cre-
ted contains 260 normal beats, 260 PVC beats, 150 paced beats and
10 LBBB and RBBB beats. The normal, PVC, paced beats, RBBB and
BBB beats were selected from file #100, 102, 104, 105, 106, 107,
18, 119, 200, 203, 205, 208, 212, 213, 214, 215 and 217 of MIT/BIH
rrhythmia database. For these 17 files, normal beats were anno-
ated as ‘N’ class, PVC beats as ‘V’ class and all other beats as ‘O’
lass in the database. The total numbers of training exemplars con-
idered were even less than 1% of the total beats used in the testing
hase. This extreme skewness among the training and testing sys-
ems were employed to check the generalization capability of the
roposed system.

The performance of the classifier was tested employing 93,246
eats from 40 files of the MIT/BIH database. As mentioned earlier,
e used 780 sample beats from 17 files only for training, out of

0 files of MIT/BIH database. Hence many beats pertaining to these
7 files and all the beats pertaining to the remaining 23 files were
ompletely unknown to the classifiers. Fig. 7 shows the proposed
cheme in flow chart form.

Some popular performance metrics were considered to deter-
ine the performance of the classifier. They were: accuracy,

ensitivity and positive predictivity. Here accuracy indicates per-
ormance of the classifier to perform three-class classification tasks,
hile sensitivity and positive predictivity indicate performance of

he classifier to classify each class of heart beat specifically.
The overall accuracy of the classifier for each file in MIT/BIH

atabase is measured using the formula:

= 100
(

1 − Ne

N

)
(11)
b

here A is the percentage classification accuracy, and Ne and Nb are
he total number of classification errors and total number of beats
n the file, respectively. The sensitivity (Se) and positive predictivity
Fig. 7. Flowchart representation of proposed scheme.

(Pp) of beat classification in a file is computed by

Se = TP

TP + FN
(12a)

Pp = TP

TP + FP
(12b)

where TP denotes true positives, FP denotes false positives and FN
denotes false negatives. True positives are the number of beats
which have been correctly assigned to a certain class whereas false
positives are the number of beats which are incorrectly assigned to
that same class. A false negative pertaining to a class are the num-
ber of beats which have been truly assigned to that class but was
wrongly assigned to another class by the classification algorithm.
The sensitivity Se measures the percentage of true beats that were
correctly classified by the algorithm. The positive predictivity Pp

measures how exclusively it classifies a certain class.
Once the classification accuracy, sensitivity and positive pre-

dictivity for each file is individually determined, in the next step,
the weighted average sensitivity and positive predictivity are calcu-
lated as a measure of the overall performance. This determination of
weighted average sensitivity and positive predictivity can be con-
sidered as important issues because of the huge variation among
files in absolute numbers of normal, PVC and other beats. Weighted
average sensitivity for each class is calculated using the formula:

SeWA (cm) =

F∑
q=1

Seq (cm)Nbq (cm)

F∑
q=1

Nbq

(13)

where SeWA is the weighted average sensitivity for the class cm, F
is the total number of files in the database, Seq and Nbq are the
sensitivity and the number of beats of file q belonging to class cm.
A similar expression is used to determine the weighted average
positive predictivity for each class.
6. Performance evaluation

The previous discussions have already detailed the signal acqui-
sition, feature extraction, creation of training and testing database
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Table 1
Classification accuracy of LS-SVM for various feature sets.

Feature set Accuracy (%) Normal beats PVC beats Other beats

Se Pp Se Pp Se Pp

26 94.51 97.64 96.12 76.81 87.35 87.62 94.81
28 94.81 98.20 96.28 78.37 86.92 87.11 95.03
30 95.00 99.66 95.64 71.02 94.19 86.43 95.09
32 95.82 99.17 96.66 83.39 91.12 87.45 96.52
34 95.01 99.53 96.05 76.38 92.98 84.97 95.14
36 92.39 93.80 96.45 85.65 81.55 84.56 95.36
38 91.98 93.57 96.56 89.16 81.18 82.09 95.41

B

T
C

T
C

est performance indicated in italics.

able 2
omprehensive results for training and testing files with 32 features.

File Beats Acc. Normal beats

Beats Se Pp

100 2271 98.55 2237 100.00 98.55
101 1863 99.62 1858 99.89 99.73
102 2185 94.23 99 27.27 77.14
103 2082 99.86 2080 99.95 99.90
104 2227 82.89 163 100.00 32.73
105 2570 95.33 2524 97.03 98.20
106 2026 96.45 1506 99.80 95.61
107 2135 95.74 0 – –
109 2530 95.94 0 – –
112 2537 99.80 2535 99.88 99.92
113 1793 99.67 1787 100 99.67
114 1877 97.66 1818 98.52 99.30
115 1951 100.00 1951 100.00 100.00
116 2410 98.76 2300 98.91 99.78
118 2276 96.84 0 – –
119 1985 100.00 1541 100.00 100.00
121 1861 99.57 1859 99.62 99.95
122 2474 100.00 2474 100.00 100.00
123 1516 99.87 1513 100.00 100.00
200 2599 97.08 1742 99.54 96.39
201 1961 92.71 1623 99.57 94.45
202 2134 95.88 2059 98.45 97.45
203 2978 93.02 2527 95.41 96.32
205 2654 99.02 2569 99.53 99.53
208 2953 87.13 1585 99.87 82.84
210 2648 96.30 2421 98.93 97.32
212 2746 98.51 922 100.00 95.74
213 3249 87.50 2639 99.47 88.27
214 2260 91.46 0 – –
215 3361 95.72 3193 99.97 95.74
217 2206 84.95 244 100.00 48.22
219 2152 98.28 2080 99.38 98.85
220 2046 97.65 1952 99.90 97.70
221 2425 99.88 2029 100.00 99.85
223 2603 87.21 2027 99.75 86.52
228 2051 94.15 1686 95.14 97.75
230 2254 100.00 2253 100.00 100.00
231 1569 94.46 314 100.00 78.50
233 3077 93.05 2229 99.06 92.15
234 2751 98.18 2698 99.92 98.22

Total 93,246 – 67,037 – –
Avg 2331.20 95.82 1675.9 – –
Wt. Avg – – – 99.17 96.66

able 3
lassification performance breakup for non-overlapping training and test sets with 32 fea

Dataset Beats Acc. Normal beats

Beats Se Pp

Training set 780 97.44 260 100.00 92.86
Testing set 92,466 95.81 66, 777 99.16 96.67
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and the multiclass classification algorithms employed in the pro-
posed scheme. The performance of LS-SVM to classify normal (N),
PVC (V) and other heart beats (O) for seven different feature sets
are shown in Table 1. A deeper study of these performances reveal
that the classifier scheme showed overall best performance when
32 feature vector set was utilized. This system showed an overall
accuracy of 95.82%. Calculation of the weighted average sensitiv-
ity using (13), showed a value of 99.17% for normal beats, 83.39%
for PVC beats and 87.45% for other beats. Similarly the values of
weighted average positive predictivity for normal, PVC and other
beats are calculated to be 96.67%, 91.12% and 96.52% respectively.

Table 2 shows classification accuracy with sensitivity and positive
predictivity for each class in all 40 files of the MIT/BIH database.
Table 3 shows the classification performance of the classifier, when
training and testing sets are completely non-overlapping. The clas-

PVC beats Other beats

Beats Se Pp Beats Se Pp

1 100.0 100.00 33 0.00 –
0 – – 5 0.00 0.00
4 75.00 6.12 2082 97.45 96.57
0 – – 2 0.00 –
2 50.00 2.13 2062 81.57 100.00

41 2.44 1.32 5 0.00 0.00
520 86.73 99.34 0 – –

59 16.95 100.00 2076 97.98 100.00
38 18.42 46.67 2492 97.11 100.00

0 – – 2 0.00 0.00
0 – – 6 0.00 0.00

43 97.97 84.00 16 0.00 0.00
0 – – 0 – –

109 96.33 82.03 1 0.00 0.00
16 18.76 60.00 2260 97.39 100.00

444 100.00 100.00 0 – –
1 100.00 12.50 1 0.00 0.00
0 – – 0 – –
3 33.33 100.00 0 – –

825 95.64 98.87 32 0.00 0.00
198 99.50 82.08 140 3.57 50.00

19 94.74 85.71 56 1.79 3.03
444 80.86 75.74 7 0.00 0.00

71 100 83.53 14 0.00 0.00
992 98.39 94.94 376 3.72 100.00
194 79.38 90.06 33 3.03 6.25

0 – – 1824 97.75 100.00
220 94.55 81.57 390 2.56 50.00
256 59.77 85.00 2004 95.51 99.95
164 15.24 92.59 4 0.00 0.00
162 71.61 62.37 1800 84.11 100.00

64 75.00 87.27 8 0.00 0.00
0 – – 94 51.06 96.00

396 99.24 100.00 0 – –
473 50.11 97.13 103 10.68 50.00
362 90.33 79.76 3 0.00 0.00

1 100.00 100.00 0 – –
2 50.00 100.00 1253 93.14 99.91

830 78.92 96.32 18 0.00 0.00
3 100.00 100.00 50 2.00 33.33

6957 – – 19,252 – –
173.93 – – 481.30 – –

– 83.39 91.12 – 87.45 96.52

tures.

PVC beats Other beats

Beats Se Pp Beats Se Pp

260 92.31 100.00 260 100.00 100.00
6697 83.02 90.78 18, 992 87.27 96.48
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Table 4
Classification accuracy of LS-SVM.

Algorithms Feature set

26 28 30 32 34 36 38

BPNN 75.78 76.9 82.23 73.34 73.38 76.27 72.16
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ERNN 72.09 81.87 81.58 82.76 80.15 76.9 72.58
LS-SVM 94.51 94.81 95.00 95.82 95.01 92.39 91.98

est performance indicated in italics.

ifier produced a classification accuracy of 97.44% for 780 beats
raining dataset and 95.81% for the remaining 92,466 unseen test-
ng beats. The performance variation of the classifier when it was
ested with non-overlapping testing set and entire dataset (95.82%)
s marginal. From Tables 1 and 2 it can be seen that the proposed
ross-correlation based LS-SVM classifier can comfortably attain at
east 91% classification accuracy in performing, three-class classifi-
ation task.

The classification performance of LS-SVM is next compared
ith back propagation neural network (BPNN) and Elman’s recur-

ent neural network (ERNN) based classifiers with all feature sets
sed being identical in each of these classifiers. BPNN produced
aximum classification accuracy of 82.23% using 30 features vec-

or, whereas ERNN produces maximum classification accuracy of
2.76% using 32 features vector. Both BPNN and ERNN incorporate
MLP three layer architecture where the second layer contains hid-
en layer neurons. ERNN contains context units in second layer in
ddition with hidden layer neurons. Number of hidden layer neu-
ons used for both BPNN and ERNN classifiers is equal to number of
eatures considered in each case. Table 4 shows a comparison of the
erformances of BPNN, ERNN and LS-SVM based multiclass classi-
ers for seven different feature sets as discussed. It can be easily
een that LS-SVM based system is much superior compared to other
ompeting algorithms in terms of overall classification accuracy.

To have a realistic understanding of the strength of proposed
cheme, the results can be compared with the results of some other
lassification algorithms reported so far. When compared to the
cheme proposed in [11], for the seven records they considered
hey could achieve an overall accuracy of 97.04%. For the same set of
les our algorithm could achieve an accuracy of 98.85%. In [10], the
lassification accuracy reported with 40 files of MIT/BIH database
as 95.16%. This scheme considered 43 features which included

ne R–R time interval feature and 42 dyadic wavelet decompo-
ition samples. In comparison our LS-SVM based classifier would
roduce classification accuracy 95.82% by using 32 features only
nd our scheme studied heartbeat morphology only. The classifica-
ion accuracy reported in [10] was as low as 81.7% when they did
ot consider R–R interval feature.

An important point to be considered is the sensitivity of the
lgorithm as a function of the choice of the reference beat for

etermining the cross-correlation sequences. As mentioned earlier,
he results reported so far are based on cross-correlation carried
ut using a normal beat from file #100. Now we demonstrate the
obustness of our proposed algorithm where same beat classifica-
ion job is performed using five sample reference beats, chosen as

able 5
lassification performance variation with variation in choice of reference beat.

Sl. No. Reference beat no. and
file information

Beat classification
accuracy (%)

1. Beat no. 19 (file #100) 95.82
2. Beat no. 424 (file #105) 96.12
3. Beat no. 6 (file #119) 95.56
4. Beat no. 197 (file #205) 95.51
5. Beat no. 2410 (file

#215)
95.66
Physics 32 (2010) 1161–1169

five different normal beats from five different files. Table 5 shows
the overall classification performance with different choices of ref-
erence beats. It can be seen that the variation in performances
is from 95.51% to 96.12% which is quite small, and in each case
the performance is found to be better than other competing algo-
rithms, discussed before. This experiment aptly demonstrates the
satisfactory robustness of the proposed algorithm.

7. Conclusion

In this work an attempt has been made to develop a robust heart
beat recognition algorithm that can automatically classify nor-
mal/PVC/other heart beats. This work proposes cross-correlation
as a formidable feature extraction tool, which when coupled with
the LS-SVM classifiers, can be efficiently employed as an automated
ECG beat classifier. This multiclass classification tool has been effi-
ciently demonstrated to segregate input ECG beats pertaining to the
categories normal beats, PVC beats, and other beats which includes
RBBB, LBBB, artial flatter beats and paced beats. The performance
of the proposed scheme has been evaluated by considering sev-
eral benchmark signals available in MIT/BIH arrhythmia database
and the overall performance was found to be as encouraging as
very close to 96%. This scheme showed how effectively frequency
domain information from cross-correlation sequences can be uti-
lized to extract relevant features. The classifiers was so designed
that the training dataset was very small (<1%) compared to the
testing dataset, so that the generalization capability can be effec-
tively demonstrated. A comparative study with several competing
algorithms, recently developed, has been carried out to justify the
usefulness of the proposed scheme.

It should be noted that the feature extraction process could
have been carried out directly from cross-correlation sequences
(i.e. in sequence or time domain) instead of using cross-spectrum
(in frequency domain). Theoretically speaking, both time-domain
and frequency-domain information can be individually useful for
developing such classification tools. However, for this particular
application, it was found that when such systems were devel-
oped using time-domain information for feature extraction, the
classification performances were significantly poor compared to
systems proposed in this work, using frequency-domain informa-
tion for feature extraction. However, it should be remarked that
no general conclusion can be drawn and there may be application
domains where time-domain information may give better classifi-
cation performances compared to frequency-domain information
based systems. Another important point to be considered is that,
as shown in Table 1, the best performance is achieved when 32
feature vector set is considered. However it is true that with incor-
poration of new measurements in the test set, this chosen size of
feature vector set may not remain optimal anymore and the perfor-
mance may degrade. However a closer scrutiny of Table 1 reveals
that with choice of size of each feature vector in the range of 28–34,
the overall accuracy that can be achieved approximately is 95% or
more, which should be considered satisfactory in most cases. Here
it should also be kept in mind that other competing algorithms
too reported their best possible performances for a given test set
and incorporation of new measurements in their test sets are also
expected to similarly degrade their performances.

Conflict of interest

The authors have no conflict of interest related to this paper.
References

[1] Dutta S, Chatterjee A, Munshi S. An automated hierarchical gait pattern identifi-
cation tool employing cross-correlation-based feature extraction and recurrent
neural network based classification. Expert Syst 2009;26(2):202–17.



ring &

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[24] Kumar S. Neural networks: a classroom approach. New Delhi, India: Tata
S. Dutta et al. / Medical Enginee

[2] Chandaka S, Chatterjee A, Munshi S. Cross-correlation aided support vec-
tor machine classifier for classification of EEG signals. Expert Syst Appl
2009;36:1329–36.

[3] Milzuno-Matsu Y, Motamedi Motog K, Webber WRS, Lesser RRP. Wavelet-
crosscorrelation analysis can help predict whether bursts of pulse stimulation
will terminate after discharges. Clin Neurophysiol 2002;113(1):33–42.

[4] Mizuno-Matsumoto Y, Motamedi GK, Webber WRS, Ishii R, Ukai S, Kaishima
T, et al. Wavelet crosscorrelation analysis of electrocorticography recordings
from epilepsy. In: International congress series, vol. 1278. Amsterdam: Elsevier
Science; 2005. p. 411–4.

[5] Chandaka S, Chatterjee A, Munshi S. Support vector machines employing cross-
correlation for emotional speech recognition. Measurement 2009;42(4):611–8.

[6] Roberts MJ. Signals and systems–analysis using transform methods and MAT-
LAB. New Delhi: Tata McGraw-Hill; 2003.

[7] Risk MR, Sobh JF, Saul JP. Beat detection and classification of ECG using self
organizing maps. In: Proc. 19th int. conf. IEEE EMBS, vol. 19. 1997. p. 89–91.

[8] Alfonso X, Nguyen TQ. ECG beat detection using filter banks. IEEE Trans Biomed
Eng 1999;46(2):192–202.

[9] Cheng WT, Chan KL. Classification of electrocardiogram using hidden Markov
models. In: Proc. 20th annu. int. conf. IEEE EMBS, vol. 20. 1998. p. 143–6.

10] Inan OT, Giovangrandi L, Kovacs GTA. Robust neural-network-based classifica-
tion of premature ventricular contractions using wavelet transform and timing
interval features. IEEE Trans Biomed Eng 2006;53(12):2507–15.

11] Shyu LY, Wu YH, Hu WC. Using wavelet transform and fuzzy neural net-

work for VPC detection from the holter ECG. IEEE Trans Biomed Eng
2004;51(7):1269–73.

12] Hosseini HG, Reynolds KJ, Powers D. A multi-stage neural network classifier for
ECG events. In: Proc. 23rd int. conf. IEEE EMBS, vol. 2. 2001. p. 1672–5.

13] Senhadji L, Carrault G, Bellanger JJ, Passariello G. Comparing wavelet transforms
for recognizing cardiac patterns. IEEE Eng Med Biol Magn 1995;14(2):167–73.

[

[

Physics 32 (2010) 1161–1169 1169

14] Christov I, Herrero GG, Krasteva V, Jekova I, Gotchev A, Egiazarian K. Compara-
tive study of morphological and time-frequency ECG descriptors for heartbeat
classification. Med Eng Phys 2006;2(9):876–87.

15] Chazal PD, Reilly RB. Automatic classification of ECG beats using waveform
shape and heart beat interval features. In: Proc. int. conf. acoustics, speech, and
signal processing (ICASSP’03), vol. 2. 2003. p. 269–72.

16] Hu YH, Palreddy S, Tompkins WJ. Patient-adaptable ECG beat classifier using a
mixture of experts approach. IEEE Trans Biomed Eng 1997;44(9):891–7.

17] Vapnik V. The nature of statistical learning theory. New York: Springer-Verlag;
1995.

18] Haykin S. Neural networks: a comprehensive foundation. 2nd ed. Newyork:
Pearson Education; 1999.

19] Suykens JAK, Vandewalle J. Least squares support vector machine classifiers.
Neural Process Lett 1999;9(3):293–300.

20] Van Gestel T, Suykens JA, Lanckriet K, Lambrechts G, Moor A, De B, et al. Mul-
ticlass LS-SVMs: moderated outputs and coding-decoding schemes. Neural
Process Lett 2002;15:45–58.

21] Li C, Zheng CX, Tai CF. Detection of ECG characteristic points using wavelet
transforms. IEEE Trans Biomed Eng 1995;42(1):21–8.

22] Martinez JP, Almeida R, Olmos S, Rocha AP, Laguna P. A wavelet-based
ECG delineator: evaluation on standard databases. IEEE Trans Biomed Eng
2004;51(4):570–81.

23] SVM toolbox. Available from: http://www.esat.kuleuven.ac.be/sista/lssvmlab/.
McGraw-Hill Publishers; 2004.
25] Mark R, Moody G. MIT-BIH arrhythmia database; 1997 [Online] Available:

http://ecg.mit.edu/dbinfo.html.
26] Mark R, Moody G. Signal processing toolbox for use with MATLAB, user guide,

version 5. Natwick, MA: The Mathworks; 2001.

http://www.esat.kuleuven.ac.be/sista/lssvmlab/
http://ecg.mit.edu/dbinfo.html

	Correlation technique and least square support vector machine combine for frequency domain based ECG beat classification
	Introduction
	Acquisition of ECG signals
	Cross-correlation based feature extraction
	Multiclass classification using least square support vector machine (LS-SVM)
	Support vector machine
	Least square support vector machine (LS-SVM)
	Multiclass classification methodology

	The proposed scheme for ECG beat classification
	Performance evaluation
	Conclusion
	Conflict of interest
	References


