
An automated hierarchical gait pattern
identification tool employing
cross-correlation-based feature extraction and
recurrent neural network based classification

Saibal Dutta,1 Amitava Chatterjee2 and
Sugata Munshi2

(1) Heritage Institute of Technology, Electrical Engineering Department, Kolkata, India,
PIN 700107
(2) Jadavpur University, Electrical Engineering Department, Kolkata, India, PIN 700 032
Email: cha_ami@yahoo.co.in

Abstract: In this paper Elman’s recurrent neural network (ERNN) is employed for automatic identification

of healthy and pathological gait and subsequent diagnosis of the neurological disorder in pathological gaits from

the respective gait patterns. Stance, swing and double support intervals (expressed as percentages of stride)

of 63 subjects were analysed for a period of approximately 300 s. The relevant gait features are extracted from

cross-correlograms of these signals with corresponding signals of a reference subject. These gait features are

used to train modular ERNNs performing binary and tertiary classifications. The average accuracy of binary

classifiers is obtained as 90.6%–97.8% and that of tertiary classifiers is 89.8%. Hence, two hierarchical

schemes are developed each of which uses more than one modular ERNN to segregate healthy, Parkinson’s

disease, Huntington’s disease and amyotrophic lateral sclerosis subjects. The average testing performances

of the schemes are 83.8% and 87.1%.

Keywords: gait analysis, feature extraction, cross-correlation, modular recurrent neural networks,
hierarchical classifiers

1. Introduction

Walking is a complicated mechanical action

which is very important for normal functioning

of human beings. The process is automatically

controlled by the nervous system and some

abnormalities in the nervous system may cause

uncontrolled and improper movements. An

automated gait pattern identification tool that

can differentiate between healthy and patholo-

gical subjects and can identify the disease caus-

ing the neurological disorder can be very useful

in real life to recognize gait degeneration and

suggest proper course of treatment. This can

also help to prevent falls which can potentially

avoid several catastrophic situations. Hence gait

signal analysis has become an important area of

research from the early 1990s (Davis, 1988;

Winter, 1991; Fildes, 1994; Nigg et al., 1994).

Several researchers have employed different

ways of analysing gait signals. Most of these

schemes explore several types of signal acquisi-

tion procedures by acquiring signals from

several parts of the human anatomy that are
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directly related to gait and posture, and then

adopting several procedures for extracting

meaningful features from the acquired signals.

Many of these methodologies are based on the

recording of (Davis, 1988)

� step frequency or cadence

� step length or length of one step

� stride length or distance between two steps

� stride interval (stance, swing and double

support interval)

� reaction force or force exerted by a person

on the floor while walking

� orthopaedic angles or orientation of limb

segments

� electromyographic activity of the involved

musculature during walking

� minimum foot clearance during walking,

during the mid swing phase of the gait cycle

While many of the schemes proposed so far

address the issue of segregating gait signals into

young and old categories (Winter, 1991;Nigg et al.,

1994; Ostrosky et al., 1994; Begg et al., 2005), not

muchwork has been reported on the determination

of neurological diseases and segregating subjects

from healthy human beings on the basis of gait

signal analysis (Holzreiter & Kohle, 1993; Carletti

et al., 2006). While young–elderly classification of

gait signals is very important to identify at-risk gait

in the older population at an early stage, to take

preventive measures against fall (Begg et al., 2005),

automatic determination of whether a subject is

suffering from a neurological disease and, if yes,

fromwhich type of neurological disease is also very

important to prescribe further course of therapy. In

fact, compared to a young–elderly classification

scheme, a disease identification scheme should

be considered a more complex problem because

the former scheme requires the performance of a

binary classification job (i.e. a two-class classifica-

tion) and the latter problem requires the perfor-

mance of a multi-class classification job with more

than two classes.

The present paper proposes the development

of an automated gait identification tool which

can automatically classify whether the subject

under consideration is a healthy one and, if not,

whether the source of neurological disorder in

the pathological subject is due to Parkinson’s

disease (PD), Huntington’s disease (HD) or

amyotrophic lateral sclerosis (ALS). The overall

purpose of the proposed method is to predict

whether an unknown subject under considera-

tion is healthy or suffering from one of the three

major neurological diseases. This is achieved by

developing a classifier which can analyse gait

signals from the subject under consideration to

predict in which class the subject belongs, i.e. the

class of healthy people, the class of people

suffering from PD, the class of people suffering

from HD or the class of people suffering from

ALS. The determination of a suitable solution

for the problem is based on decomposing the

problem into two subproblems:

(a) the determination of a suitable method for

meaningful feature extraction from gait

signals and

(b) designing a suitable classification algorithm

based on those features extracted.

For the problem under consideration, for each

subject several gait parameters are considered,

namely the stance interval, the swing interval and

the double support interval, all expressed as

percentages of stride time. As stance, swing and

double support intervals associated with walking

tend to be different for normal and pathological

subjects, features derived from them can poten-

tially be useful to develop healthy and pathologi-

cal classification models. The consecutive stance

intervals, swing intervals and double support

intervals are considered to constitute three sepa-

rate time series (sequences) or discrete-time sig-

nals. For each such signal acquired from each

subject, the feature extraction is carried out by

determining the signal’s cross-correlogram with a

reference subject’s corresponding signal and then

extracting some relevant features from each such

cross-correlogram. This is followed by the devel-

opment of a supervised network for classification,

utilizing the features extracted as inputs. For our

system, we propose Elman’s recurrent neural net-

work (ERNN) (Bose & Liang, 1998; Haykin,

2004) to perform this classification. In general,

several neural network based methodologies have

been proposed in the literature for biomedical
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signal processing and decision support systems

(Pizzi, 2001; Güler & Übeyli, 2005, 2006; BariSçi

& Hardalaç, 2007; Durbin et al., 2008). ERNNs

have also been previously employed for pattern

recognition problems in other problem domains

(Lee & Song, 1997). ERNNs are a special type of

supervised neural networks which employ both

feedforward and feedback connections to per-

form multidimensional mathematical mapping,

and they are suitable for learning both temporal

and spatial inputs. In this paper we propose two

different schemes, each utilizing more than

one modular ERNN in hierarchical form, which

can be used as composite solution systems. The

proposed schemes have been tested for several

benchmark signals and the performance exhibited

encouraging results compared to several fuzzy

clustering methods and the backpropagation

neural network (BPNN) based classifier.

The rest of the paper is organized as follows.

Section 2 presents a brief description of the gait

signals and their acquisition procedure. The

cross-correlation technique based feature

extraction methodology is detailed in Section 3.

The ERNN based classification scheme and two

composite schemes employing modular ERNNs

in hierarchical fashion are presented in Section

4. Section 5 presents a performance evaluation.

Conclusions are presented in Section 6.

2. Acquisition of gait signals

For the system under consideration, we have

utilized benchmark gait signals that are freely

available from the Physionet database.1 The data-

base contains real-life gait signals acquired from

both healthy subjects and pathological subjects

with neurological disorders due to PD, HD and

ALS. This database maintains a measure of dis-

ease severity or duration, to indicate how severely

a person (present in that database) is affected by

PD, HD or ALS. The database uses the Hohn and

Yahr score for subjects suffering from PD. A

higher value of this score indicates a more ad-

vanced condition of the disease. The score varies

from 1.5 to 4 for the PD subjects under considera-

tion here. For 60% of these patients, the score is 3

or more, signifying a more advanced state of the

disease. The database uses the total functional

capacity measure for HD subjects. Here a lower

score indicates more advanced functional impair-

ment. The score varies from 1 to 12 for the HD

subjects under consideration. Here, for almost

50% of these patients, the score is 5 or less

(signifying a more severe state of the disease), and

for the remaining 50% the score is more than 5.

For the subjects suffering from ALS, the severity

measure maintained by the database is the time

since the onset of the disease. Here, for almost

80% of these ALS patients, the severity of the

ALS disease is moderate.

The subjects were instructed to walk at their

normal speed along a 77m long hallway. To

measure gait rhythm and the timing of gait cycle,

force-sensitive insoles were placed in each sub-

ject’s shoe. The gait time sequences were obtained

using these force-sensitive resistors, with output

roughly proportional to the force under the foot.

Stride to stride measures of footfall contact times

were derived from these signals, and the stride

time (i.e. the time from initial contact of one foot

to subsequent contact of the same foot) along

with swing and stance times were determined for

each stride. For each subject, stride to stride

measurements of footfall contact times are ac-

quired for approximately 300 s. In the present

study, we have considered the time sequences

corresponding to the left and right stance inter-

vals, the left and right swing intervals and the

double support interval, each expressed as a

percentage of the stride time, for each subject.

Figures 1–3 demonstrate the time sequence plots

of the left swing interval, the right stance interval

and the double support interval for some sample

subjects. A close inspection of these plots reveals

that it is impossible to differentiate between

healthy and pathological subjects without any

ambiguity. This indicates that the need for an

automated system that can automatically classify

pathological and healthy subjects is paramount.

To further strengthen this observation, we

carried out frequency analyses of some sample

signals from each class. Figure 4 shows the

1http://physionet.fri.uni-lj.si/physiobank/database/gaitndd/.
Last accessed 29 November 2007.
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Figure 1: Plot of

left swing interval

(% of stride) versus

time for sample

healthy and patho-

logical subjects.

50 100 150 200 250

50

100
Amyotrophic Lateral Sclerosis

50 100 150 200 250

50

100

Parkinson Disease

50 100 150 200 250
0

50

Huntington Disease

50 100 150 200 250
0

50

Healthy Subject

Time (sec.)

R
ig

ht
 S

ta
nc

e 
In

te
rv

al
 (

%
 o

f 
st

ri
de

)

Figure 2: Plot of

right stance interval

(% of stride) versus

time for sample

healthy and patho-

logical subjects.
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results of these analyses, computed by employ-

ing fast Fourier transform, carried out for

two left stance interval signals belonging to each

class, i.e. the gait signals acquired for two

sample healthy subjects, two sample subjects

suffering from PD, two sample subjects suffer-

ing from HD and two sample subjects suffering

from ALS. The figure shows plots of the abso-

lute magnitudes of the discrete Fourier coeffi-

cients computed for each signal. These plots

50 100 150 200 250

50

100
Amyotrophic Lateral Sclerosis

50 100 150 200 250

50

100

Parkinson Disease

50 100 150 200 250

20

40

Huntington Disease

50 100 150 200 250
0

50

Healthy Subject

Time (sec.)

D
ou

bl
e 

Su
pp

or
t I

nt
er

va
l (

%
 o

f 
st

ri
de

)

Figure 3: Plot of

double support inter-

val (%of stride) ver-

sus time for sample

healthy and patho-

logical subjects.

Figure 4: Plot of

the absolute magni-

tudes of the fast

Fourier transform

coefficients for the

left stance interval

signals of sample

subjects belonging

to different classes.
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also demonstrate that even computation of

frequency analysis, utilizing Fourier transform,

is not sufficient to clearly infer whether a signal

belongs to a particular class or not.

3. Cross-correlation-based feature extraction

The mathematical technique of cross-correlation

of two signals is aimed at answering the question:

to what extent are the two signals correlated? In

other words, it provides quantitative information

about the extent to which a definite pattern of

relationship exists between the signals.

The cross-correlation technique has been con-

veniently utilized in robotics and remote-sensing

applications, for comparing different images. It

has also been used in sonar and radar systems

for range and position detection, in the recovery

of signals buried in noise, and in several other

domains (Ifeacher & Jervis, 2001; Roberts, 2003).

A few papers employing the cross-correlation

technique in the realm of biomedical signal

processing have been reported in the literature

(Suljagic et al., 1996; Kuppusamy et al., 1997;

Mizuno-Matsumoto et al., 2002, 2005). However,

one of the novelties of the present work lies in

applying the cross-correlation technique judi-

ciously, as a feature extraction tool, for the

problem of gait signal processing.

The cross-correlation of two finite duration

causal sequences x[n] and y[n], each of length

N samples, is obtained as

rxy½m� ¼
XN� mj j�1

n¼ 0

x½n�y½n�m�

m¼ � ðN � 1Þ;�ðN � 2Þ; . . . ;

0; 1; 2; 3; . . . ;N � 1

ð1Þ

In this work, as mentioned earlier, one of the

healthy subjects is chosen as reference. The

stance interval (left and right), swing interval

(left and right) and double support sequences of

each of the other subjects are cross-correlated

with the corresponding sequences of the refer-

ence. This yields five cross-correlograms

for each subject. As equation (1) represents

the formula for unbiased correlation, it should

be kept in mind that the beginning and the end

of a signal have important contributions in the

cross-correlogram generated. Hence, in our ex-

periments, these are kept uniform for all signals

and each signal considered is of uniform length.

Some representative sets of cross-correlograms

are depicted in Figure 5. Here, a signal from the

reference subject is x[n] and the corresponding

signal from any other subject is y[n]. Three traits

of the cross-correlation sequences, expressed

quantitatively by the centroid (cent), the mean-

square abscissa (msa) and the variance of the

abscissa (va) (Bracewell, 2000), are found to

serve as important indicators of the neurological

state of the subjects. They are defined as

cent¼hmi¼

PN�1
m¼�ðN�1Þ

mrxy½m�

PN�1
m¼�ðN�1Þ

rxy½m�
ð2Þ

msa¼hm2i¼

PN�1
m¼�ðN�1Þ

m2rxy½m�

PN�1
m¼�ðN�1Þ

rxy½m�
ð3Þ

va¼hðm� hmiÞ2i

¼

PN�1
m¼�ðN�1Þ

ðm� hmiÞ2rxy½m�

PN�1
m¼�ðN�1Þ

rxy½m�

ð4Þ

The above quantitative descriptors of the

cross-correlograms are evaluated for several

subjects with known neurological states of

health and these values are subsequently used

to train the recurrent neural networks (RNNs).

Once this process is complete, it is expected that

for a new subject, if the above quantities are

calculated and fed to the RNNs, the system can

determine whether the subject is healthy or not,

and also the type of illness, where the subject is

found to be ill. The three features extracted from

the left stance interval sequence of a subject
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are named as cent_l_st, msa_l_st and va_l_st.

Similarly the three features extracted from the

right stance interval sequence are named as

cent_r_st, msa_r_st and va_r_st, the three fea-

tures extracted from the left swing interval

sequence are named as cent_l_sw, msa_l_sw and

va_l_sw, the three features extracted from the

right swing interval sequence are named as

cent_r_sw, msa_r_sw and va_r_lw, and the three

features extracted from the double support

sequence are named as cent_ds, msa_ds and

va_ds. Hence, for each subject under considera-

tion, 15 features are extracted from five cross-

correlograms. Table 1 presents a list of these

features, used as the inputs for each RNN, with

their range of values obtained for our specific

problem under consideration.

4. ERNN based hierarchical classification tool

4.1. ERNNs

RNNs are especially useful for learning both

temporal and spatial patterns. Compared with a

multilayer perceptron (MLP), which employs

only feedforward connection, RNNs are more

complicated as they employ a combination of

feedback and feedforward connections, exhibit-

ing the property of memory (Bose & Liang,

1998; Haykin, 2004). RNNs are useful for two

types of application: as associated memories and

for input–output mapping (Zhou & Xu, 1999;

Delgado et al., 2006; Süt & Renocak, 2007;

Übeyli, 2007). In our application, we are inter-

ested in input–output mapping and there are

several architecture layouts available for differ-

ent relevant RNNs. Some popular variants of

such RNNs include Jordan’s network (which

employs feedback connection from the output

of the output layer to the input of the input

layer) (Jordon, 1986), Elman’s network (which

employs feedback connection from the output

of the hidden layer to the input of the input

layer) (Lee & Song, 1997), the Pollack sequential

cascade network (Pollack, 1991), the higher

order RNN of Giles et al. (1990), Lee and

Song’s network (in which each output node is

connected to itself) (Lee & Song, 1997) etc. In

our system we have employed Elman’s RNN, a
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popular RNN in the category of dynamically

driven neural networks. Like several other

RNNs, Elman’s network incorporates a static

MLP architecture as its basic building block

and employs some popular learning algorithms,

employed for training MLPs, for their training.

Figure 6 shows the generic architecture of an

ERNN utilized in our work. This is a three-layer

architecture where layer 2 contains context units

in addition to the hidden neurons. The context

units comprise a bank of unit time delay; they

store the outputs of the hidden neurons for one

time step and then these are fed back to the

input of the input layer. Hence the context units

depict the short-term memory of the RNN.

However, as the output of the hidden layer of

the RNN, at any time step, is a nonlinear

function of both the output of the input layer at

that given time step and the output of the hidden

layer in the previous time step, the network

continues to recycle information over multiple

time steps, which is useful for efficient discovery

of temporal patterns (Haykin, 2004). Mathema-

tically speaking, the output from the hidden

layer at the kth time step is given as

z2j ðkÞ¼ f1
XN
i¼ 1

z1i ðkÞw12
ij þ

XP
j¼ 1

z2j ðk� 1Þc22jj þ b2j

" #

ð5Þ

where zj
2 (k) is the output of the jth neuron of

layer 2 at the kth time step, zi
1 (k) is the output

of the ith neuron of layer 1 at the kth time

step xi(k), wij
12 is the weight connecting the ith

neuron of layer 1 and the jth neuron of layer 2,

cjj
22 is the weight connecting the jth neuron of

context units and the jth hidden layer neuron of

layer 2, zj
2 (k� 1) is the output of the jth neuron

of layer 2 delayed by one time step, bj
2 is the bias

associated with the jth neuron of layer 2,N is the

number of inputs and P is the number of hidden

layer neurons. Hence the output of the ERNN

can be given as

z3ðkÞ¼ f2
XP
j¼ 1

z2j ðkÞw23
j

" #
ð6Þ

where z3(k) is the output of the only neuron in

the output layer at time step k, wj
23 is the weight

connecting the jth neuron of layer 2 to the only

neuron in layer 3, and f1(�) represents a non-

linear function, usually chosen as a tan sigmoi-

dal or log sigmoidal function. f2(�) can be either

a linear or a nonlinear mapping.

A generalized ERNN can employ multiple

neurons in the output layer also. In the training

phase, for a multiclass problem, the output, for

each exemplar input to an ERNN, is chosen for

our system as y 2 f1; 2; . . . ; c; . . . ;Cg. Here C is

the total number of classes in which each RNN

is designated to classify its inputs. In the

implementation phase, the output of the ERNN

X

Input layer
(layer 1)

hidden layer
(layer 2)

output layer
(layer 3) 

y

Context units

Figure 6: The architecture of the ERNN.

Table 1: The range or universe of discourse for

the selected features

Features Range or discourse

cent_l_st [� 60, 35]
msa_l_st [8524, 14100]
va_l_st [6130, 12878]
cent_r_st [� 59, 35]
msa_r_st [8500, 14500]
va_r_st [6122, 12900]
cent_l_sw [� 60, 35]
msa_l_sw [8442, 14000]
va_r_st [6052,12829]
cent_r_sw [� 60, 35]
msa_r_sw [8440, 14040]
va_r_sw [6050, 12830]
cent_ds [� 59, 35]
msa_ds [7574, 13920]
va_ds [5990, 12745]
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is classified as

yclass¼ c if c� 0:5 < yr cþ 0:5 ð7Þ

except for the two terminal classes where

yclass¼ 1 if y< 1.5 and yclass¼C if y>C� 0.5.

4.2. Hierarchical structure of modular ERNNs

The proposed system is configured as a four-

class classification system (i.e. C¼ 4) where the

four classes correspond to healthy subjects,

pathological subjects suffering from PD, patho-

logical subjects suffering from HD and patholo-

gical subjects suffering from ALS. Hence two

schemes are proposed in this paper for solving

the composite problem, where each scheme

utilizes more than one ERNN in modular

form. Each modular ERNN is designed to solve

a subproblem and these ERNNs are arranged in a

hierarchical fashion where the output of one

ERNNdetermines whether another (ormore than

one) ERNN should be activated or not. Each

ERNN is activated as a 15-input one-output

system where the 15 inputs are determined from

the features extracted from cross-correlograms, as

discussed in Section 3.

For the proposed scheme 1, ERNN1 is

trained to solve a binary classification problem

where we determine whether the subject under

test is healthy=pathological. If the subject is

diagnosed to be pathological, then ERNN2 is

activated with the same set of feature vectors,

determined for that specific subject. ERNN2 is

specifically trained with the training data set

determined from pathological subjects only and

it is designed to solve a three-class problem,

segregating pathological subjects into PD, HD

and ALS classes. Figure 7 shows the proposed

scheme 1 in flowchart form. Finally, outputs

from both ERNN1 and ERNN2 are utilized to

suggest the ultimate diagnosis which classifies

the subject under consideration into one of the

four classes, i.e. healthy, PD, HD, ALS.

The same problem can also be solved by

employing proposed scheme 2, shown in flow-

chart form in Figure 8. The feature extraction

part remains identical to that of scheme 1 but

the classification module now employs three

modular ERNNs, namely ERNN1, ERNN3

and ERNN4, each trained to perform specific

binary classification jobs. The ERNN1 imple-

mented is identical to that proposed for scheme

1. But, if it diagnoses the subject as pathological,

then ERNN3 is activated to determine whether

the pathological subject is suffering from ALS

or not. If the answer is negative, then ERNN4

is activated to determine whether the subject

is suffering from PD or HD. The final outcome

of the automated tool proposed in scheme 2 is

determined by considering outputs from all

three ERNNs.

5. Performance evaluation

To evaluate the performance of the proposed

schemes we have considered the signals avail-

able (see footnote 1). As discussed earlier, we

considered five time sequence gait signals for

each subject. By constructing the corresponding

cross-correlograms with reference to the corre-

sponding signals acquired from the reference

subject, we computed a total of 15 features for

each subject (extracting three features from each

of the five cross-correlograms). Table 1 shows

the universe of discourse for all these features

extracted from the entire signal database.

Once the feature extraction phase is over, each

of the four modular ERNNs is trained based on

their corresponding training data sets. The com-

posite training and testing data sets are created by

using 50% of the data in each data set. ERNN1 is

trained utilizing the entire training data set,

ERNN2 and ERNN3 are trained utilizing those

exemplars in the training data set that belong to

pathological subjects and ERNN4 is trained

utilizing those exemplars in the training data set

that belong to PD or HD diseases.

On successful completion of training, each

modular ERNN is tested independently. ERNN1

is tested utilizing the entire testing data set, each

of ERNN2 and ERNN3 is tested utilizing those

exemplars in the testing data set that belong to

pathological subjects and ERNN4 is tested utiliz-

ing PD and HD subjects from the testing data-

base only. Tables 2–5 present the performance

results for each ERNN separately. Here each
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ERNNwas implemented 20 times and the percent

classification results are mentioned in each case

with the corresponding mean, standard devia-

tion and range of results obtained employing 20

such runs for each ERNN. Each system was also

implemented in accordance with N-crossfold va-

lidation theory with N¼ 2, i.e. the whole set of

experiments was carried out a second time by

swapping the composite training and testing data

sets and the result of a particular run is consid-

ered as the mean of the two runs conducted by

swapping training and testing data sets.

From Tables 2–5 it can be seen that, whenever

the proposed cross-correlation aided modular

ERNNs are implemented for binary classifica-

tion purposes, they can comfortably attain

90.0% or more classification accuracy: ERNN1

reported a mean of 90.6%, ERNN3 reported as

high as 97.8% and ERNN4 reported 94.1%

accuracy. For ERNN2, which employed a

three-class classification algorithm, accuracy

was understandably a little lower, i.e. 89.8%.

For each of them, the performance is compared

by utilizing fuzzy c-means (FCM) clustering

(Abonyi et al., 2006), Gustafson–Kessel (GK)

fuzzy clustering (Abonyi et al., 2006) and BPNN

based (Demuth & Beale, 1998) classification

algorithms. Each of these classification=clustering
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Figure 7: Flowchart representation of scheme 1.
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Figure 8: Flowchart representation of scheme 2.

Table 2: Classification performance of ERNN1

Algorithm Classification accuracy

Healthy subject Pathological subject Overall

Mean
(%)

Std dev.
(%)

Range
(%)

Mean
(%)

Std dev.
(%)

Range
(%)

Mean
(%)

Std dev.
(%)

Range
(%)

FCM clustering 93.3 – – 55.3 – – 64.5 – –
GK fuzzy clustering 80.0 – – 55.3 – – 61.3 – –
BPNN 61.5 9.9 50.0–75.0 88.4 2.8 82.6–91.3 81.2 2.7 77.4–83.9
ERNN1 90.0 5.1 87.5–100 90.9 3.1 87.1–93.6 90.6 1.8 87.1–93.6

Note: Each fuzzy clustering result is reported on a single-run basis and hence no standard deviation and range values of

percent classification accuracies are mentioned.
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algorithms is initiated by the identical cross-

correlation-based feature extraction procedure

described earlier and hence all of them are based

on 15-dimensional feature vectors. Each fuzzy

clustering result is reported on a single-run

basis. However, as BPNNs, like ERNNs, also

employ supervised neural network based train-

ing procedures, they are employed in an identi-

Table 3: Classification performance of ERNN2

Algorithm Classification accuracy

ALS PD HD Overall

Mean
(%)

Std
dev.
(%)

Range
(%)

Mean
(%)

Std
dev.
(%)

Range
(%)

Mean
(%)

Std
dev.
(%)

Range
(%)

Mean
(%)

Std
dev.
(%)

Range
(%)

FCM
clustering

61.5 – – 60.0 – – 37.0 – – 51.0 – –

GK fuzzy
clustering

30.7 – – 86.7 – – 10.5 – – 38.3 – –

BPNN 25.0 8.7 16.7–33.0 63.8 3.9 62.5–75.0 60.0 5.8 55.5–66.7 52.1 2.9 47.8–56.5
ERNN2 89.1 8.2 83.3–100 80.0 7.5 75.0–100 97.2 4.9 88.9–100 89.8 3.2 87.0

Note: Each fuzzy clustering result is reported on a single-run basis and hence no standard deviation and range values of

percent classification accuracies are mentioned.

Table 4: Classification performance of ERNN3

Algorithm Classification accuracy

ALS Non-ALS Overall

Mean
(%)

Std dev.
(%)

Range
(%)

Mean
(%)

Std dev.
(%)

Range
(%)

Mean
(%)

Std dev.
(%)

Range
(%)

FCM clustering 92.3 – – 55.8 – – 66.0 – –
GK fuzzy
clustering

84.6 – – 44.0 – – 55.3 – –

BPNN 50.0 0.0 50.0–50.0 83.5 5.4 76.5–88.7 74.8 4.0 69.6–78.3
ERNN3 91.7 8.6 83.3–100 99.4 1.8 94.1–100 97.8 2.6 91.3–100

Note: Each fuzzy clustering result is reported on a single-run basis and hence no standard deviation and range values of

percent classification accuracies are mentioned.

Table 5: Classification performance of ERNN4

Algorithm Classification accuracy

PD HD Overall

Mean
(%)

Std dev.
(%)

Range
(%)

Mean
(%)

Std dev.
(%)

Range
(%)

Mean
(%)

Std dev.
(%)

Range
(%)

FCM clustering 93.3 – – 55.3 – – 64.5 – –
GK fuzzy clustering 80.0 – – 55.3 – – 61.3 – –
BPNN 51.3 13.7 37.5–75.0 68.9 6.8 56.6–77.7 60.6 5.6 53.0–70.6
ERNN4 87.5 4.1 75.0–100 99.4 2.5 88.9–100 93.8 1.3 88.2–94.1

Note: Each fuzzy clustering result is reported on a single-run basis and hence no standard deviation and range values of

percent classification accuracies are mentioned.
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cal manner to ERNNs. Hence each BPNN

result is reported on the basis of 20 runs, with

their corresponding mean, standard deviation

and range values. Each fuzzy clustering algo-

rithm is implemented for the complete database,

i.e. utilizing 100% of the exemplars in each data

set. In each case, it can easily be seen that the

performance of ERNN based systems is much

superior compared to other competing algo-

rithms. While fuzzy clustering based unsuper-

vised procedures consistently produced worst

results with classification accuracy varying in

the range 51%–66%, the BPNN based super-

vised procedure produced inferior results with

mean classification accuracy in the range

52.1%–81.2%. For fuzzy clustering schemes, a

variation of the fuzzy exponent m in the range

[1.1, 3.0] could not improve the result. Once

these encouraging results were obtained with

each modular ERNN, we employed the compo-

site hierarchical schemes, scheme 1 and scheme

2, to obtain the automated gait identifi-

cation tools as a four-class classification system.

Table 6 reports these results which show that

scheme 1 could produce 83.8% and scheme 2

could produce 87.1% overall accuracy. These

results of scheme 1 and scheme 2 are reported

with the best performing modular ERNNs,

taken as their building blocks. These accuracies

are a little less than individual accuracies of

modular ERNNs, when implemented in stand-

alone form. But this is understandable as

each composite scheme employs two or three

modular ERNNs, in hierarchical form. Tables 7

and 8 present the confusion matrices corre-

sponding to the scheme 1 and scheme 2 results,

respectively, presented in Table 6.

To have a realistic understanding of how

strong or weak the proposed schemes are, we

can compare these results with some of the

other results reported utilizing gait signals. Our

schemes are based on signals acquired from 63

subjects and results are reported on the basis

of 62 subjects (as one subject is taken as

the reference subject). In Giles et al. (1990), the

SVM based procedure could solve the binary

classification problem into young=elderly gaits,

utilizing 24 statistical features extracted from

minimum foot clearance data of 58 patients,

with a mean classification accuracy of 83.3%.

Compared to their scheme, each of our binary

classification modular ERNN systems could

comfortably produce more than 90% accuracy

results and with fewer input features (i.e. 15). In

Begg et al. (2005), even after the introduction of

a hill-climbing algorithm for relevant feature

selection (which introduces significant addi-

tional computational burden) the binary classi-

fication result could not improve more than

90%. In Barton and Lees (1997), another neural

network based gait classification scheme was

proposed using features from hip–knee joint

angle measures. The problem was configured as

a three-class classification problem and they

Table 6: Composite classification performance for scheme 1 and scheme 2

Scheme ALS (%) PD (%) HD (%) Healthy subject (%) Overall (%)

Scheme 1 83.3 83.3 78.0 87.5 83.8
Scheme 2 83.3 87.5 88.9 87.5 87.1

Table 7: Confusion matrix for scheme 1

Actual class Predicted class

ALS PD HD Healthy

ALS 5 0 1 0
PD 0 7 1 0
HD 0 1 7 1
Healthy 0 0 1 7

Table 8: Confusion matrix for scheme 2

Actual class Predicted class

ALS PD HD Healthy

ALS 5 1 0 0
PD 1 7 0 0
HD 0 0 8 1
Healthy 0 0 1 7
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utilized data from eight subjects only. This

scheme reported a classification ratio of 83.3%

only. In the light of these discussions, our

modular ERNNs reporting 90.3%–98.5% clas-

sification accuracy for binary classification jobs,

87.0% accuracy for three-class classification

jobs and an accuracy as high as 87.1% for the

composite scheme, considering the complete

problem as a four-class classification problem,

should be considered as very promising and

encourage solutions for analysing gait signals

to segregate healthy subjects from pathological

subjects and to identify the source of the neuro-

logical disorder in pathological subjects.

6. Conclusion

In this work an attempt has beenmade to develop

a robust algorithm which can automatically iden-

tify healthy=pathological gait and the type of

neurological disease. Cross-correlation has been

proposed as a formidable feature extraction tool

and the ERNN has been effectively employed as

an automated gait pattern classifier utilizing these

extracted features.

Two gait identification schemes have been

proposed here, utilizing several modular ERNNs

in hierarchical form. Each of these schemes

has been successfully implemented as a multiclass

classification tool where one can segregate the

input gait signals pertaining to healthy subjects

and pathological subjects suffering from specific

neurological disorders, i.e. PD, HD and ALS.

The performances of the proposed schemes have

been evaluated by considering some benchmark

signals and very encouraging results have been

reported compared with other contemporary

algorithms available in practice.

The proposed methods show how modular

RNNs can be effectively utilized for the specific

problem under consideration and we utilized

Elman’s version of RNN to develop these

modular neural networks. This will encourage

us to make an in-depth study of the feasibility

of implementing several candidate RNN algo-

rithms available in the literature (e.g. Jordan’s

network, Pollack’s network, finite impulse re-

sponse networks, Laguerre models etc.) and to

compare their performance. We intend to un-

dertake this study as a future extension of the

current work.
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