M.TECH/CSE/1ST SEM /MATH 5102/2015 2015

Advanced Discrete Mathematics (MATH 5102)

Time Allotted: 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

		Group - A	
		oice Type Questions)	
	ect alternatives for the		10 x 1=10
		m elements to a set with	
(a) <i>n</i> ^m	(b) <i>m</i> ⁿ	(c) <i>nm</i>	(d) n!m! .
(ii) The equation	12x + 15y = 28		
	que solution in intege		
	lution in integers	(d) has infinite numb	er of solutions in
integers.	er of maximal eleme	nts in the noset {1.2.3	3,6,12,24,36,48} are (with
	sibility relation)	nes in the poset (1,11,15	,0,12,21,00,10, are (
(a) 3	(b) 1	(c) 2	(d) 4.
(iv) Among the fo	ollowing posets, the se	t that is totally ordered	is
(a) (C, \leq)		(b) ({1,2,4,6},)	
(c) ({2,4,6,8,1	(,{0)	(d) (Z, \leq)	
(v) The relation	(1,2), (1,3), (3,1), (1,	1), (3,3), (3,2), (1,4), (4,	2), (3,4)} is
(a) reflexive		(c) symmetric	(d) anti-symmetric.
(vi) The remaind	er when the sum 4! +!	5! + 6! ++50! is divide	d by 4 is
(a) 1	(b) 2	(c) 3	(d) 0.
	sists of three compon er of the graph is	ents, each of which is a	tree having 6 vertices.The
(a) 3	(b) 2	(c) 6	(d)18.
(viii) If $\chi(G) = 15$,	then the maximum n	umber of colours requir	ed for colouring G is
(a) 13	(b) 14	(c) 15	(d) None of these.
(ix) The chromat	tic polynomial of a tre	e having 10 vertices is	
(a) $x(x+1)$)10	(b) $(x-1)^9$	
(c) $x^{9}(x -$	1)	(d) $x(x-1)^9$.	
PECENTER DE DE D	6)		

M.TECH/CSE/1ST SEM /MATH 5102/2015

(x) Which of the following function $f: Z \times Z \rightarrow Z$ is not surjective

(a) f(a,b) = a + b

(b) f(a,b) = a - b

(c) f(a,b) = a

(d) f(a,b) = |b|

Group - B

- 2.(a) Draw the Hasse diagram for the set of positive integer divisors of 32 with respect to the divisibility relation.
 - (b) Show that there is exactly one greatest element of a poset, if such an element exists.
- (c) What is the covering relation of the partial ordering $\{(a,b) | a \text{ divides } b\}$ on {1,2,3,4,6,12}.

4 + 4 + 4 = 12

- 3.(a) Prove that the set $\{\phi, \{a\}, \{a,c\}, \{c\}, \{a,b,c\}\}\$ is a lattice with respect to the relations \cap and \cup . Is it complemented?
 - (b) Prove that a poset is a lattice if the supremum & infimum of (a,b) exist for every pair of elements a, b in the set.

6 + 6 = 12

Group - C

- 4.(a) Find gcd(12378,3054) and express it as 12378x + 3054y, where x and y are integers.
 - (b) Show that $4^{203} \equiv 4 \pmod{5}$. State any theorem that you use.

6 + 6 = 12

- 5.(a) If gcd(a,b) = 1, prove that $gcd(a^2 b^2, a^2 + b^2) = 1$ or 2.
 - (b) Prove that, if c is a divisor of ab and gcd(b,c) = 1, then c is a divisor of a.

6 + 6 = 12

Group - D

6.(a) Find a general solution of the recurrence relation

 $a_n = 4a_{n-1} - 3a_{n-2}$

- (b) Find the coefficient of X^{23} and X^{32} in $\left(1+X^5+X^9\right)^{10}$
- (d) If A and B are some subsets of some universal set U, then prove that $n(A \cup B) = n(A) + n(B) - n(A \cap B)$

5 + 4 + 3 = 12

MATH 5102

M.TECH/CSE/1ST SEM /MATH 5102/2015

- 7.(a) How many different license plates are available if each plate contains a sequence of three letters followed by three digits?
 - (b) Show that among any (n+1) positive integers not exceeding 2n there must be an integer that divides one of the other integers.
 - (c) Prove that ${}^{n+g-1}C_n = {}^gC_1 \times {}^{n-1}C_0 + {}^gC_2 \times {}^{n-1}C_1 + \cdots + {}^gC_g \times {}^{n-1}C_{g-1}$ where n > g. 4 + 5 + 3 = 12

Group - E

8.(a) Find the chromatic polynomial of the following graph:

(b) Prove that a bipartite graph cannot contain a cycle of odd length.

6 + 6 = 12

- 9.(a) Prove that a graph *G* is a tree if and only if every pair of vertices in it is connected by one and only one path.
 - (b) If every region of a simple planar graph having n vertices and e edges drawn in a plane is bounded by k edges, prove that k(n-2) = e(k-2).

6 + 6 = 12